Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
DeLiang L. Wang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (1): 131–139.
Published: 01 January 2000
Abstract
View article
PDF
A long-standing problem in neural computation has been the problem of connectedness, first identified by Minsky and Papert (1969). This problem served as the cornerstone for them to establish analytically that perceptrons are fundamentally limited in computing geometrical (topological) properties. A solution to this problem is offered by a different class of neural networks: oscillator networks. To solve the problem, the representation of oscillatory correlation is employed, whereby one pattern is represented as a synchronized block of oscillators and different patterns are represented by distinct blocks that desynchronize from each other. Oscillatory correlation emerges from LEGION (locally excitatory globally inhibitory oscillator network), whose architecture consists of local excitation and global inhibition among neural oscillators. It is further shown that these oscillator networks exhibit sensitivity to topological structure, which may lay a neurocomputational foundation for explaining the psychophysical phenomenon of topological perception.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1595–1619.
Published: 01 October 1999
Abstract
View article
PDF
Due to many experimental reports of synchronous neural activity in the brain, there is much interest in understanding synchronization in networks of neural oscillators and its potential for computing perceptual organization. Contrary to Hopfield and Herz (1995), we find that networks of locally coupled integrate-and-fire oscillators can quickly synchronize. Furthermore, we examine the time needed to synchronize such networks. We observe that these networks synchronize at times proportional to the logarithm of their size, and we give the parameters used to control the rate of synchronization. Inspired by locally excitatory globally inhibitory oscillator network (LEGION) dynamics with relaxation oscillators (Terman & Wang, 1995), we find that global inhibition can play a similar role of desynchronization in a network of integrate-and-fire oscillators. We illustrate that a LEGION architecture with integrate-and-fire oscillators can be similarly used to address image analysis.