Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Demba Ba
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (4): 1046–1079.
Published: 01 April 2018
FIGURES
| View All (11)
Abstract
View article
PDF
A fundamental problem in neuroscience is to characterize the dynamics of spiking from the neurons in a circuit that is involved in learning about a stimulus or a contingency. A key limitation of current methods to analyze neural spiking data is the need to collapse neural activity over time or trials, which may cause the loss of information pertinent to understanding the function of a neuron or circuit. We introduce a new method that can determine not only the trial-to-trial dynamics that accompany the learning of a contingency by a neuron, but also the latency of this learning with respect to the onset of a conditioned stimulus. The backbone of the method is a separable two-dimensional (2D) random field (RF) model of neural spike rasters, in which the joint conditional intensity function of a neuron over time and trials depends on two latent Markovian state sequences that evolve separately but in parallel. Classical tools to estimate state-space models cannot be applied readily to our 2D separable RF model. We develop efficient statistical and computational tools to estimate the parameters of the separable 2D RF model. We apply these to data collected from neurons in the prefrontal cortex in an experiment designed to characterize the neural underpinnings of the associative learning of fear in mice. Overall, the separable 2D RF model provides a detailed, interpretable characterization of the dynamics of neural spiking that accompany the learning of a contingency.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (2): 237–263.
Published: 01 February 2014
FIGURES
| View All (24)
Abstract
View article
PDF
Likelihood-based encoding models founded on point processes have received significant attention in the literature because of their ability to reveal the information encoded by spiking neural populations. We propose an approximation to the likelihood of a point-process model of neurons that holds under assumptions about the continuous time process that are physiologically reasonable for neural spike trains: the presence of a refractory period, the predictability of the conditional intensity function, and its integrability. These are properties that apply to a large class of point processes arising in applications other than neuroscience. The proposed approach has several advantages over conventional ones. In particular, one can use standard fitting procedures for generalized linear models based on iteratively reweighted least squares while improving the accuracy of the approximation to the likelihood and reducing bias in the estimation of the parameters of the underlying continuous-time model. As a result, the proposed approach can use a larger bin size to achieve the same accuracy as conventional approaches would with a smaller bin size. This is particularly important when analyzing neural data with high mean and instantaneous firing rates. We demonstrate these claims on simulated and real neural spiking activity. By allowing a substantive increase in the required bin size, our algorithm has the potential to lower the barrier to the use of point-process methods in an increasing number of applications.