Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Dennis Forster
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (8): 2113–2174.
Published: 01 August 2018
FIGURES
| View All (11)
Abstract
View article
PDF
We explore classifier training for data sets with very few labels. We investigate this task using a neural network for nonnegative data. The network is derived from a hierarchical normalized Poisson mixture model with one observed and two hidden layers. With the single objective of likelihood optimization, both labeled and unlabeled data are naturally incorporated into learning. The neural activation and learning equations resulting from our derivation are concise and local. As a consequence, the network can be scaled using standard deep learning tools for parallelized GPU implementation. Using standard benchmarks for nonnegative data, such as text document representations, MNIST, and NIST SD19, we study the classification performance when very few labels are used for training. In different settings, the network's performance is compared to standard and recently suggested semisupervised classifiers. While other recent approaches are more competitive for many labels or fully labeled data sets, we find that the network studied here can be applied to numbers of few labels where no other system has been reported to operate so far.