Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Dominique Chu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (10): 1627–1656.
Published: 08 September 2023
FIGURES
| View All (8)
Abstract
View articletitled, Exploring Trade-Offs in Spiking Neural Networks
View
PDF
for article titled, Exploring Trade-Offs in Spiking Neural Networks
Spiking neural networks (SNNs) have emerged as a promising alternative to traditional deep neural networks for low-power computing. However, the effectiveness of SNNs is not solely determined by their performance but also by their energy consumption, prediction speed, and robustness to noise. The recent method Fast & Deep, along with others, achieves fast and energy-efficient computation by constraining neurons to fire at most once. Known as time-to-first-spike (TTFS), this constraint, however, restricts the capabilities of SNNs in many aspects. In this work, we explore the relationships of performance, energy consumption, speed, and stability when using this constraint. More precisely, we highlight the existence of trade-offs where performance and robustness are gained at the cost of sparsity and prediction latency. To improve these trade-offs, we propose a relaxed version of Fast & Deep that allows for multiple spikes per neuron. Our experiments show that relaxing the spike constraint provides higher performance while also benefiting from faster convergence, similar sparsity, comparable prediction latency, and better robustness to noise compared to TTFS SNNs. By highlighting the limitations of TTFS and demonstrating the advantages of unconstrained SNNs, we provide valuable insight for the development of effective learning strategies for neuromorphic computing.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (7): 1408–1429.
Published: 01 July 2020
Abstract
View articletitled, Minimal Spiking Neuron for Solving Multilabel Classification Tasks
View
PDF
for article titled, Minimal Spiking Neuron for Solving Multilabel Classification Tasks
The multispike tempotron (MST) is a powersul, single spiking neuron model that can solve complex supervised classification tasks. It is also internally complex, computationally expensive to evaluate, and unsuitable for neuromorphic hardware. Here we aim to understand whether it is possible to simplify the MST model while retaining its ability to learn and process information. To this end, we introduce a family of generalized neuron models (GNMs) that are a special case of the spike response model and much simpler and cheaper to simulate than the MST. We find that over a wide range of parameters, the GNM can learn at least as well as the MST does. We identify the temporal autocorrelation of the membrane potential as the most important ingredient of the GNM that enables it to classify multiple spatiotemporal patterns. We also interpret the GNM as a chemical system, thus conceptually bridging computation by neural networks with molecular information processing. We conclude the letter by proposing alternative training approaches for the GNM, including error trace learning and error backpropagation.