Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Doron Tal
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (2): 305–318.
Published: 15 February 1997
Abstract
View article
PDF
The leaky integrate-and-fire (LIF) model of neuronal spiking (Stein 1967) provides an analytically tractable formalism of neuronal firing rate in terms of a neuron's membrane time constant, threshold, and refractory period. LIF neurons have mainly been used to model physiologically realistic spike trains, but little application of the LIF model appears to have been made in explicitly computational contexts. In this article, we show that the transfer function of a LIF neuron provides, over a wide parameter range, a compressive nonlinearity sufficiently close to that of the logarithm so that LIF neurons can be used to multiply neural signals by mere addition of their outputs yielding the logarithm of the product. A simulation of the LIF multiplier shows that under a wide choice of parameters, a LIF neuron can log-multiply its inputs to within a 5% relative error.