Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
E. Domany
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (9): 2201–2220.
Published: 01 September 2002
Abstract
View article
PDF
We introduce and study an artificial neural network inspired by the probabilistic receptor affinity distribution model of olfaction. Our system consists of N sensory neurons whose outputs converge on a single processing linear threshold element. The system's aim is to model discrimination of a single target odorant from a large number p of background odorants within a range of odorant concentrations. We show that this is possible provided p does not exceed a critical value p c and calculate the critical capacity α c = p c / N . The critical capacity depends on the range of concentrations in which the discrimination is to be accomplished. If the olfactory bulb may be thought of as a collection of such processing elements, each responsible for the discrimination of a single odorant, our study provides a quantitative analysis of the potential computational properties of the olfactory bulb. The mathematical formulation of the problem we consider is one of determining the capacity for linear separability of continuous curves, embedded in a large-dimensional space. This is accomplished here by a numerical study, using a method that signals whether the discrimination task is realizable, together with a finite-size scaling analysis.