Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Edmund T. Rolls
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (1): 139–169.
Published: 01 January 2007
Abstract
View article
PDF
The motion of an object (such as a wheel rotating) is seen as consistent independent of its position and size on the retina. Neurons in higher cortical visual areas respond to these global motion stimuli invariantly, but neurons in early cortical areas with small receptive fields cannot represent this motion, not only because of the aperture problem but also because they do not have invariant representations. In a unifying hypothesis with the design of the ventral cortical visual system, we propose that the dorsal visual system uses a hierarchical feedforward network architecture (V1, V2, MT, MSTd, parietal cortex) with training of the connections with a short-term memory trace associative synaptic modification rule to capture what is invariant at each stage. Simulations show that the proposal is computationally feasible, in that invariant representations of the motion flow fields produced by objects self-organize in the later layers of the architecture. The model produces invariant representations of the motion flow fields produced by global in-plane motion of an object, in-plane rotational motion, looming versus receding of the object, and object-based rotation about a principal axis. Thus, the dorsal and ventral visual systems may share some similar computational principles.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (11): 2585–2596.
Published: 01 November 2002
Abstract
View article
PDF
To form view-invariant representations of objects, neurons in the inferior temporal cortex may associate together different views of an object, which tend to occur close together in time under natural viewing conditions. This can be achieved in neuronal network models of this process by using an associative learning rule with a short-term temporal memory trace. It is postulated that within a view, neurons learn representations that enable them to generalize within variations of that view. When three-dimensional (3D) objects are rotated within small angles (up to, e.g., 30 degrees), their surface features undergo geometric distortion due to the change of perspective. In this article, we show how trace learning could solve the problem of in-depth rotation-invariant object recognition by developing representations of the transforms that features undergo when they are on the surfaces of 3D objects. Moreover, we show that having learned how features on 3D objects transform geometrically as the object is rotated in depth, the network can correctly recognize novel 3D variations within a generic view of an object composed of a new combination of previously learned features. These results are demonstrated in simulations of a hierarchical network model (VisNet) of the visual system that show that it can develop representations useful for the recognition of 3D objects by forming perspective-invariant representations to allow generalization within a generic view.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (11): 2547–2572.
Published: 01 November 2000
Abstract
View article
PDF
VisNet2 is a model to investigate some aspects of invariant visual object recognition in the primate visual system. It is a four-layer feedforward network with convergence to each part of a layer from a small region of the preceding layer, with competition between the neurons within a layer and with a trace learning rule to help it learn transform invariance. The trace rule is a modified Hebbian rule, which modifies synaptic weights according to both the current firing rates and the firing rates to recently seen stimuli. This enables neurons to learn to respond similarly to the gradually transforming inputs it receives, which over the short term are likely to be about the same object, given the statistics of normal visual inputs. First, we introduce for VisNet2 both single-neuron and multiple-neuron information-theoretic measures of its ability to respond to transformed stimuli. Second, using these measures, we show that quantitatively resetting the trace between stimuli is not necessary for good performance. Third, it is shown that the sigmoid activation functions used in VisNet2, which allow the sparseness of the representation to be controlled, allow good performance when using sparse distributed representations. Fourth, it is shown that VisNet2 operates well with medium-range lateral inhibition with a radius in the same order of size as the region of the preceding layer from which neurons receive inputs. Fifth, in an investigation of different learning rules for learning transform invariance, it is shown that VisNet2 operates better with a trace rule that incorporates in the trace only activity from the preceding presentations of a given stimulus, with no contribution to the trace from the current presentation, and that this is related to temporal difference learning.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1553–1577.
Published: 01 October 1999
Abstract
View article
PDF
The effectiveness of various stimulus identification (decoding) procedures for extracting the information carried by the responses of a population of neurons to a set of repeatedly presented stimuli is studied analytically, in the limit of short time windows. It is shown that in this limit, the entire information content of the responses can sometimes be decoded, and when this is not the case, the lost information is quantified. In particular, the mutual information extracted by taking into account only the most likely stimulus in each trial turns out to be, if not equal, much closer to the true value than that calculated from all the probabilities that each of the possible stimuli in the set was the actual one. The relation between the mutual information extracted by decoding and the percentage of correct stimulus decodings is also derived analytically in the same limit, showing that the metric content index can be estimated reliably from a few cells recorded from brief periods. Computer simulations as well as the activity of real neurons recorded in the primate hippocampus serve to confirm these results and illustrate the utility and limitations of the approach.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (6): 1349–1388.
Published: 15 August 1999
Abstract
View article
PDF
Cortical areas are characterized by forward and backward connections between adjacent cortical areas in a processing stream. Within each area there are recurrent collateral connections between the pyramidal cells. We analyze the properties of this architecture for memory storage and processing. Hebb-like synaptic modifiability in the connections and attractor states are incorporated. We show the following: (1) The number of memories that can be stored in the connected modules is of the same order of magnitude as the number that can be stored in any one module using the recurrent collateral connections, and is proportional to the number of effective connections per neuron. (2) Cooperation between modules leads to a small increase in memory capacity. (3) Cooperation can also help retrieval in a module that is cued with a noisy or incomplete pattern. (4) If the connection strength between modules is strong, then global memory states that reflect the pairs of patterns on which the modules were trained together are found. (5) If the intermodule connection strengths are weaker, then separate, local memory states can exist in each module. (6) The boundaries between the global and local retrieval states, and the nonretrieval state, are delimited. All of these properties are analyzed quantitatively with the techniques of statistical physics.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (3): 601–631.
Published: 01 April 1999
Abstract
View article
PDF
The distribution of responses of sensory neurons to ecological stimulation has been proposed to be designed to maximize information transmission, which according to a simple model would imply an exponential distribution of spike counts in a given time window. We have used recordings from inferior temporal cortex neurons responding to quasi-natural visual stimulation (presented using a video of everyday lab scenes and a large number of static images of faces and natural scenes) to assess the validity of this exponential model and to develop an alternative simple model of spike count distributions. We find that the exponential model has to be rejected in 84% of cases (at the p < 0.01 level). A new model, which accounts for the firing rate distribution found in terms of slow and fast variability in the inputs that produce neuronal activation, is rejected statistically in only 16% of cases. Finally, we show that the neurons are moderately efficient at transmitting information but not optimally efficient.