Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Eric E. Thomson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (4): 741–778.
Published: 01 April 2005
Abstract
View article
PDF
Performance in sensory discrimination tasks is commonly quantified using either information theory or ideal observer analysis. These two quantitative frameworks are often assumed to be equivalent. For example, higher mutual information is said to correspond to improved performance of an ideal observer in a stimulus estimation task. To the contrary, drawing on and extending previous results, we show that five information-theoretic quantities (entropy, response-conditional entropy, specific information, equivocation, and mutual information) violate this assumption. More positively, we show how these information measures can be used to calculate upper and lower bounds on ideal observer performance, and vice versa. The results show that the mathematical resources of ideal observer analysis are preferable to information theory for evaluating performance in a stimulus discrimination task. We also discuss the applicability of information theory to questions that ideal observer analysis cannot address.