Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Federico Polito
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (3): 699–724.
Published: 01 March 2015
FIGURES
| View All (17)
Abstract
View article
PDF
If interspike intervals are dependent, the instantaneous firing rate does not catch important features of spike trains. In this case, the conditional instantaneous rate plays the role of the instantaneous firing rate for the case of samples of independent interspike intervals. If the conditional distribution of the interspikes intervals (ISIs) is unknown, it becomes difficult to evaluate the conditional firing rate. We propose a nonparametric estimator for the conditional instantaneous firing rate for Markov, stationary, and ergodic ISIs. An algorithm to check the reliability of the proposed estimator is introduced, and its consistency properties are proved. The method is applied to data obtained from a stochastic two-compartment model and to in vitro experimental data.