Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Fernando J. Pineda
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (7): 1403–1419.
Published: 10 July 1997
Abstract
View article
PDF
A representation-independent mean-field dynamics is presented for batched TD(λ). The task is learning to predict the outcome of an indirectly observed absorbing Markov process. In the case of linear representations, the discrete-time deterministic iteration is an affine map whose fixed point can be expressed in closed form without the assumption of linearly independent observation vectors. Batched linear TD(λ) is proved to converge with probability 1 for all λ. Theory and simulation agree on a random walk example.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1989) 1 (2): 161–172.
Published: 01 June 1989
Abstract
View article
PDF
Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control.