Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-13 of 13
Florentin Wörgötter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (4): 1173–1202.
Published: 01 April 2009
FIGURES
| View All (9)
Abstract
View article
PDF
In this theoretical contribution, we provide mathematical proof that two of the most important classes of network learning—correlation-based differential Hebbian learning and reward-based temporal difference learning—are asymptotically equivalent when timing the learning with a modulatory signal. This opens the opportunity to consistently reformulate most of the abstract reinforcement learning framework from a correlation-based perspective more closely related to the biophysics of neurons.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (10): 2694–2719.
Published: 01 October 2007
Abstract
View article
PDF
It is a well-known fact that Hebbian learning is inherently unstable because of its self-amplifying terms: the more a synapse grows, the stronger the postsynaptic activity, and therefore the faster the synaptic growth. This unwanted weight growth is driven by the autocorrelation term of Hebbian learning where the same synapse drives its own growth. On the other hand, the cross-correlation term performs actual learning where different inputs are correlated with each other. Consequently, we would like to minimize the autocorrelation and maximize the cross-correlation. Here we show that we can achieve this with a third factor that switches on learning when the autocorrelation is minimal or zero and the cross-correlation is maximal. The biological counterpart of such a third factor is a neuromodulator that switches on learning at a certain moment in time. We show in a behavioral experiment that our three-factor learning clearly outperforms classical Hebbian learning.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (6): 1380–1412.
Published: 01 June 2006
Abstract
View article
PDF
Currently all important, low-level, unsupervised network learning algorithms follow the paradigm of Hebb, where input and output activity are correlated to change the connection strength of a synapse. However, as a consequence, classical Hebbian learning always carries a potentially destabilizing autocorrelation term, which is due to the fact that every input is in a weighted form reflected in the neuron's output. This self-correlation can lead to positive feedback, where increasing weights will increase the output, and vice versa, which may result in divergence. This can be avoided by different strategies like weight normalization or weight saturation, which, however, can cause different problems. Consequently, in most cases, high learning rates cannot be used for Hebbian learning, leading to relatively slow convergence. Here we introduce a novel correlation-based learning rule that is related to our isotropic sequence order (ISO) learning rule (Porr & Wörgötter, 2003a), but replaces the derivative of the output in the learning rule with the derivative of the reflex input. Hence, the new rule uses input correlations only, effectively implementing strict heterosynaptic learning. This looks like a minor modification but leads to dramatically improved properties. Elimination of the output from the learning rule removes the unwanted, destabilizing autocorrelation term, allowing us to use high learning rates. As a consequence, we can mathematically show that the theoretical optimum of one-shot learning can be reached under ideal conditions with the new rule. This result is then tested against four different experimental setups, and we will show that in all of them, very few (and sometimes only one) learning experiences are needed to achieve the learning goal. As a consequence, the new learning rule is up to 100 times faster and in general more stable than ISO learning.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (5): 1156–1196.
Published: 01 May 2006
Abstract
View article
PDF
Biped walking remains a difficult problem, and robot models can greatly facilitate our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based neuronal network governed mainly by local sensor signals. Building on earlier work (Taga, 1995; Cruse, Kindermann, Schumm, Dean, & Schmitz, 1998), this study shows that human-like gaits emerge without specific position or trajectory control and that the walker is able to compensate small disturbances through its own dynamical properties. The reflexive controller used here has the following characteristics, which are different from earlier approaches: (1) Control is mainly local. Hence, it uses only two signals (anterior extreme angle and ground contact), which operate at the interjoint level. All other signals operate only at single joints. (2) Neither position control nor trajectory tracking control is used. Instead, the approximate nature of the local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics) to contribute substantially to the overall gait trajectory computation. (3) The motor control scheme used in the local reflexes of our robot is more straightforward and has more biological plausibility than that of other robots, because the outputs of the motor neurons in our reflexive controller are directly driving the motors of the joints rather than working as references for position or velocity control. As a consequence, the neural controller and the robot mechanics are closely coupled as a neuromechanical system, and this study emphasizes that dynamically stable biped walking gaits emerge from the coupling between neural computation and physical computation. This is demonstrated by different walking experiments using a real robot as well as by a Poincaré map analysis applied on a model of the robot in order to assess its stability.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (2): 245–319.
Published: 01 February 2005
Abstract
View article
PDF
In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and correlation-based (Hebbian) learning related? and How do the different models correspond to possibly underlying biological mechanisms of synaptic plasticity? We first compare the different models in an open-loop condition, where behavioral feedback does not alter the learning. Here we observe that reward-based and correlation-based learning are indeed very similar. Machine control is then used to introduce the problem of closed-loop control (e.g., actor-critic architectures). Here the problem of evaluative (rewards) versus nonevaluative (correlations) feedback from the environment will be discussed, showing that both learning approaches are fundamentally different in the closed-loop condition. In trying to answer the second question, we compare neuronal versions of the different learning architectures to the anatomy of the involved brain structures (basal-ganglia, thalamus, and cortex) and the molecular biophysics of glutamatergic and dopaminergic synapses. Finally, we discuss the different algorithms used to model STDP and compare them to reward-based learning rules. Certain similarities are found in spite of the strongly different timescales. Here we focus on the biophysics of the different calcium-release mechanisms known to be involved in STDP.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (3): 595–625.
Published: 01 March 2004
Abstract
View article
PDF
Spike-timing-dependent plasticity (STDP) is described by long-term potentiation (LTP), when a presynaptic event precedes a postsynaptic event, and by long-term depression (LTD), when the temporal order is reversed. In this article, we present a biophysical model of STDP based on a differential Hebbian learning rule (ISO learning). This rule correlates presynaptically the NMDA channel conductance with the derivative of the membrane potential at the synapse as the postsynaptic signal. The model is able to reproduce the generic STDP weight change characteristic. We find that (1) The actual shape of the weight change curve strongly depends on the NMDA channel characteristics and on the shape of the membrane potential at the synapse. (2) The typical antisymmetrical STDP curve (LTD and LTP) can become similar to a standard Hebbian characteristic (LTP only) without having to change the learning rule. This occurs if the membrane depolarization has a shallow onset and is long lasting. (3) It is known that the membrane potential varies along the dendrite as a result of the active or passive backpropagation of somatic spikes or because of local dendritic processes. As a consequence, our model predicts that learning properties will be different at different locations on the dendritic tree. In conclusion, such site-specific synaptic plasticity would provide a neuron with powerful learning capabilities.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (4): 831–864.
Published: 01 April 2003
Abstract
View article
PDF
In this article, we present an isotropic unsupervised algorithm for temporal sequence learning. No special reward signal is used such that all inputs are completely isotropic. All input signals are bandpass filtered before converging onto a linear output neuron. All synaptic weights change according to the correlation of bandpass-filtered inputs with the derivative of the output. We investigate the algorithm in an open- and a closed-loop condition, the latter being defined by embedding the learning system into a behavioral feedback loop. In the open-loop condition, we find that the linear structure of the algorithm allows analytically calculating the shape of the weight change, which is strictly heterosynaptic and follows the shape of the weight change curves found in spike-time-dependent plasticity. Furthermore, we show that synaptic weights stabilize automatically when no more temporal differences exist between the inputs without additional normalizing measures. In the second part of this study, the algorithm is is placed in an environment that leads to closed sensor-motor loop. To this end, a robot is programmed with a prewired retraction reflex reaction in response to collisions. Through isotropic sequence order (ISO) learning, the robot achieves collision avoidance by learning the correlation between his early range-finder signals and the later occurring collision signal. Synaptic weights stabilize at the end of learning as theoretically predicted. Finally, we discuss the relation of ISO learning with other drive reinforcement models and with the commonly used temporal difference learning algorithm. This study is followed up by a mathematical analysis of the closed-loop situation in the companion article in this issue, “ISO Learning Approximates a Solution to the Inverse-Controller Problem in an Unsupervised Behavioral Paradigm” (pp. 865–884).
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (4): 865–884.
Published: 01 April 2003
Abstract
View article
PDF
In “Isotropic Sequence Order Learning” (pp. 831–864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed reflex reaction, which has the objective disadvantage that it can react only after a disturbance has occurred. ISO learning eliminates this disadvantage by replacing the reflex-loop reactions with earlier anticipatory actions. In this article, we analytically demonstrate that this process can be understood in terms of control theory, showing that the system learns the inverse controller of its own reflex. Thereby, this system is able to learn a simple form of feedforward motor control.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (1): 139–159.
Published: 01 January 2001
Abstract
View article
PDF
Receptive fields (RF) in the visual cortex can change their size depending on the state of the individual. This reflects a changing visual resolution according to different demands on information processing during drowsiness. So far, however, the possible mechanisms that underlie these size changes have not been tested rigorously. Only qualitatively has it been suggested that state-dependent lateral geniculate nucleus (LGN) firing patterns (burst versus tonic firing) are mainly responsible for the observed cortical receptive field restructuring. Here, we employ a neural field approach to describe the changes of cortical RF properties analytically. Expressions to describe the spatiotemporal receptive fields are given for pure feedforward networks. The model predicts that visual latencies increase nonlinearly with the distance of the stimulus location from the RF center. RF restructuring effects are faithfully reproduced. Despite the changing RF sizes, the model demonstrates that the width of the spatial membrane potential profile (as measured by the variance σ of a gaussian) remains constant in cortex. In contrast, it is shown for recurrent networks that both the RF width and the width of the membrane potential profile generically depend on time and can even increase if lateral cortical excitatory connections extend further than fibers from LGN to cortex. In order to differentiate between a feedforward and a recurrent mechanism causing the experimental RF changes, we fitted the data to the analytically derived point-spread functions. Results of the fits provide estimates for model parameters consistent with the literature data and support the hypothesis that the observed RF sharpening is indeed mainly driven by input from LGN, not by recurrent intracortical connections.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (6): 1547–1566.
Published: 15 August 1998
Abstract
View article
PDF
Image segmentation in spin-lattice models relies on the fast and reliable assignment of correct labels to those groups of spins that represent the same object. Commonly used local spin-update algorithms are slow because in each iteration only a single spin is flipped and a careful annealing schedule has to be designed in order to avoid local minima and correctly label larger areas. Updating of complete spin clusters is more efficient, but often clusters that should represent different objects will be conjoined. In this study, we propose a cluster update algorithm that, similar to most local update algorithms, calculates an energy function and determines the probability for flipping a whole cluster of spins by the energy gain calculated for a neighborhood of the regarded cluster. The novel algorithm, called energy-based cluster update (ECU algorithm) is compared to its predecessors. A convergence proof is derived, and it is shown that the algorithm outperforms local update algorithms by far in speed and reliability. At the same time it is more robust and noise tolerant than other versions of cluster update algorithms, making annealing completely unnecessary. The reduction in computational effort achieved this way allows us to segment real images in about 1–5 sec on a regular workstation. The ECU-algorithm can recover fine details of the images, and it is to a large degree robust with respect to luminance-gradients across objects. In a final step, we introduce luminance dependent visual latencies (Opara & Wörgötter, 1996; Wörgötter, Opara, Funke, & Eysel, 1996) into the spin-lattice model. This step guarantees that only spins representing pixels with similar luminance become activated at the same time. The energy function is then computed only for the interaction of the regarded cluster with the currently active spins. This latency mechanism improves the quality of the image segmentation by another 40%. The results shown are based on the evaluation of gray-level differences. It is important to realize that all algorithmic components can be transferred easily to arbitrary image features, like disparity, texture, and motion.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (7): 1493–1520.
Published: 01 October 1996
Abstract
View article
PDF
An artificial neural network model is proposed that combines several aspects taken from physiological observations (oscillations, synchronizations) with a visual latency mechanism in order to achieve an improved analysis of visual scenes. The network consists of two parts. In the lower layers that contain no lateral connections the propagation velocity of the activity of the units depends on the contrast of the individual objects in the scene. In the upper layers lateral connections are used to achieve synchronization between corresponding image parts. This architecture assures that the activity that arises in response to a scene containing objects with different contrast is spread out over several layers in the network. Thereby adjacent objects with different contrast will be separated and synchronization occurs in the upper layers without mutual disturbance between different objects. A comparison with a one-layer network shows that synchronization in the latency dependent multilayer net is indeed achieved much faster as soon as more than five objects have to be recognized. In addition, it is shown that the network is highly robust against noise in the stimuli or variations in the propagation delays (latencies), respectively. For a consistent analysis of a visual scene the different features of an individual object have to be recognized as belonging together and separated from other objects. This study shows that temporal differences, naturally introduced by stimulus latencies in every biological sensory system, can strongly improve the performance and allow for an analysis of more complex scenes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1994) 6 (4): 602–614.
Published: 01 July 1994
Abstract
View article
PDF
Visual space is represented by cortical cells in an orderly manner. Only little variation in the cell behavior is found with changing depth below the cortical surface, that is, all cells in a column with axis perpendicular to the cortical plane have approximately the same properties (Hubel and Wiesel 1962, 1963, 1968). Therefore, the multiple features of the visual space (e.g., position in visual space, preferred orientation, and orientation tuning strength) are mapped on a two-dimensional space, the cortical plane. Such a dimension reduction leads to complex maps (Durbin and Mitchison 1990) that so far have evaded an intuitive understanding. Analyzing optical imaging data (Blasdel 1992a, b; Blasdel and Salama 1986; Grinvald et al . 1986) using a theoretical approach we will show that the most salient features of these maps can be understood from a few basic design principles: local correlation, modularity, isotropy, and homogeneity. These principles can be defined in a mathematically exact sense in the Fourier domain by a rather simple annulus-like spectral structure. Many of the models that have been developed to explain the mapping of the preferred orientations (Cooper et al . 1979; Legendy 1978; Linsker 1986a, b; Miller 1992; Nass and Cooper 1975; Obermayer et al . 1990, 1992; Soodak 1987; Swindale 1982, 1985, 1992; von der Malsburg 1973; von der Malsburg and Cowan 1982) are quite successful in generating maps that are close to experimental maps. We suggest that this success is due to these principles, which are common properties of the models and of biological maps.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (3): 332–340.
Published: 01 May 1992
Abstract
View article
PDF
To what extent do the mechanisms generating different receptive field properties of neurons depend on each other? We investigated this question theoretically within the context of orientation and direction tuning of simple cells in the mammalian visual cortex. In our model a cortical cell of the "simple" type receives its orientation tuning by afferent convergence of aligned receptive fields of the lateral geniculate nucleus (Hubel and Wiesel 1962). We sharpen this orientation bias by postulating a special type of radially symmetric long-range lateral inhibition called circular inhibition . Surprisingly, this isotropic mechanism leads to the emergence of a strong bias for the direction of motion of a bar. We show that this directional anisotropy is neither caused by the probabilistic nature of the connections nor is it a consequence of the specific columnar structure chosen but that it is an inherent feature of the architecture of visual cortex.