Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Friedemann Zenke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (4): 899–925.
Published: 26 March 2021
Abstract
View article
PDF
Brains process information in spiking neural networks. Their intricate connections shape the diverse functions these networks perform. Yet how network connectivity relates to function is poorly understood, and the functional capabilities of models of spiking networks are still rudimentary. The lack of both theoretical insight and practical algorithms to find the necessary connectivity poses a major impediment to both studying information processing in the brain and building efficient neuromorphic hardware systems. The training algorithms that solve this problem for artificial neural networks typically rely on gradient descent. But doing so in spiking networks has remained challenging due to the nondifferentiable nonlinearity of spikes. To avoid this issue, one can employ surrogate gradients to discover the required connectivity. However, the choice of a surrogate is not unique, raising the question of how its implementation influences the effectiveness of the method. Here, we use numerical simulations to systematically study how essential design parameters of surrogate gradients affect learning performance on a range of classification problems. We show that surrogate gradient learning is robust to different shapes of underlying surrogate derivatives, but the choice of the derivative's scale can substantially affect learning performance. When we combine surrogate gradients with suitable activity regularization techniques, spiking networks perform robust information processing at the sparse activity limit. Our study provides a systematic account of the remarkable robustness of surrogate gradient learning and serves as a practical guide to model functional spiking neural networks.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (6): 1514–1541.
Published: 01 June 2018
FIGURES
| View All (8)
Abstract
View article
PDF
A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.