Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Friedrich Leisch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (10): 2427–2450.
Published: 01 October 2000
Abstract
View article
PDF
We consider autoregressive neural network (AR-NN) processes driven by additive noise and demonstrate that the characteristic roots of the shortcuts—the standard conditions from linear time-series analysis—determine the stochastic behavior of the overall AR-NN process. If all the characteristic roots are outside the unit circle, then the process is ergodic and stationary. If at least one characteristic root lies inside the unit circle, then the process is transient. AR-NN processes with characteristic roots lying on the unit circle exhibit either ergodic, random walk, or transient behavior. We also analyze the class of integrated AR-NN (ARI-NN) processes and show that a standardized ARI-NN process “converges” to a Wiener process. Finally, least-squares estimation (training) of the stationary models and testing for nonstationarity is discussed. The estimators are shown to be consistent, and expressions on the limiting distributions are given.