Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
G. Bard Ermentrout
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (12): 3111–3125.
Published: 01 December 2012
FIGURES
| View All (15)
Abstract
View article
PDF
We introduce a simple two-dimensional model that extends the Poincaré oscillator so that the attracting limit cycle undergoes a saddle node bifurcation on an invariant circle (SNIC) for certain parameter values. Arbitrarily close to this bifurcation, the phase-resetting curve (PRC) continuously depends on parameters, where its shape can be not only primarily positive or primarily negative but also nearly sinusoidal. This example system shows that one must be careful inferring anything about the bifurcation structure of the oscillator from the shape of its PRC.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (5): 1047–1065.
Published: 01 July 1998
Abstract
View article
PDF
We propose a biophysical mechanism for the high interspike interval variability observed in cortical spike trains. The key lies in the nonlinear dynamics of cortical spike generation, which are consistent with type I membranes where saddle-node dynamics underlie excitability (Rinzel & Ermentrout, 1989). We present a canonical model for type I membranes, the θ-neuron. The θ-neuron is a phase model whose dynamics reflect salient features of type I membranes. This model generates spike trains with coefficient of variation (CV) above 0.6 when brought to firing by noisy inputs. This happens because the timing of spikes for a type I excitable cell is exquisitely sensitive to the amplitude of the suprathreshold stimulus pulses. A noisy input current, giving random amplitude “kicks” to the cell, evokes highly irregular firing across a wide range of firing rates; an intrinsically oscillating cell gives regular spike trains. We corroborate the results with simulations of the Morris-Lecar (M-L) neural model with random synaptic inputs: type I M-L yields high CVs. When this model is modified to have type II dynamics (periodicity arises via a Hopf bifurcation), however, it gives regular spike trains (CV below 0.3). Our results suggest that the high CV values such as those observed in cortical spike trains are an intrinsic characteristic of type I membranes driven to firing by “random” inputs. In contrast, neural oscillators or neurons exhibiting type II excitability should produce regular spike trains.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (4): 837–854.
Published: 15 May 1998
Abstract
View article
PDF
Oscillations in many regions of the cortex have common temporal characteristics with dominant frequencies centered around the 40 Hz (gamma) frequency range and the 5–10 Hz (theta) frequency range. Experimental results also reveal spatially synchronous oscillations, which are stimulus dependent (Gray&Singer, 1987;Gray, König, Engel, & Singer, 1989; Engel, König, Kreiter, Schillen, & Singer, 1992). This rhythmic activity suggests that the coherence of neural populations is a crucial feature of cortical dynamics (Gray, 1994). Using both simulations and a theoretical coupled oscillator approach, we demonstrate that the spike frequency adaptation seen in many pyramidal cells plays a subtle but important role in the dynamics of cortical networks. Without adaptation, excitatory connections among model pyramidal cells are desynchronizing. However, the slow processes associated with adaptation encourage stable synchronous behavior.