Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
G. S. Androulakis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1769–1796.
Published: 01 October 1999
Abstract
View article
PDF
This article focuses on gradient-based backpropagation algorithms that use either a common adaptive learning rate for all weights or an individual adaptive learning rate for each weight and apply the Goldstein/Armijo line search. The learning-rate adaptation is based on descent techniques and estimates of the local Lipschitz constant that are obtained without additional error function and gradient evaluations. The proposed algorithms improve the backpropagation training in terms of both convergence rate and convergence characteristics, such as stable learning and robustness to oscillations. Simulations are conducted to compare and evaluate the convergence behavior of these gradient-based training algorithms with several popular training methods.