Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Ganchao Wei
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (7): 1187–1208.
Published: 12 June 2023
Abstract
View articletitled, Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson Variability
View
PDF
for article titled, Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson Variability
In many areas of the brain, neural spiking activity covaries with features of the external world, such as sensory stimuli or an animal's movement. Experimental findings suggest that the variability of neural activity changes over time and may provide information about the external world beyond the information provided by the average neural activity. To flexibly track time-varying neural response properties, we developed a dynamic model with Conway-Maxwell Poisson (CMP) observations. The CMP distribution can flexibly describe firing patterns that are both under- and overdispersed relative to the Poisson distribution. Here we track parameters of the CMP distribution as they vary over time. Using simulations, we show that a normal approximation can accurately track dynamics in state vectors for both the centering and shape parameters ( λ and ν ). We then fit our model to neural data from neurons in primary visual cortex, “place cells” in the hippocampus, and a speed-tuned neuron in the anterior pretectal nucleus. We find that this method outperforms previous dynamic models based on the Poisson distribution. The dynamic CMP model provides a flexible framework for tracking time-varying non-Poisson count data and may also have applications beyond neuroscience.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (10): 2682–2709.
Published: 16 September 2021
Abstract
View articletitled, Tracking Fast and Slow Changes in Synaptic Weights From Simultaneously Observed Pre- and Postsynaptic Spiking
View
PDF
for article titled, Tracking Fast and Slow Changes in Synaptic Weights From Simultaneously Observed Pre- and Postsynaptic Spiking
Synapses change on multiple timescales, ranging from milliseconds to minutes, due to a combination of both short- and long-term plasticity. Here we develop an extension of the common generalized linear model to infer both short- and long-term changes in the coupling between a pre- and postsynaptic neuron based on observed spiking activity. We model short-term synaptic plasticity using additive effects that depend on the presynaptic spike timing, and we model long-term changes in both synaptic weight and baseline firing rate using point process adaptive smoothing. Using simulations, we first show that this model can accurately recover time-varying synaptic weights (1) for both depressing and facilitating synapses, (2) with a variety of long-term changes (including realistic changes, such as due to STDP), (3) with a range of pre and postsynaptic firing rates, and (4) for both excitatory and inhibitory synapses. We then apply our model to two experimentally recorded putative synaptic connections. We find that simultaneously tracking fast changes in synaptic weights, slow changes in synaptic weights, and unexplained variations in baseline firing is essential. Omitting any one of these factors can lead to spurious inferences for the others. Altogether, this model provides a flexible framework for tracking short- and long-term variation in spike transmission.