Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Gary M. Scott
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1994) 6 (4): 718–738.
Published: 01 July 1994
Abstract
View article
PDF
The KBANN (Knowledge-Based Artificial Neural Networks) approach uses neural networks to refine knowledge that can be written in the form of simple propositional rules. This idea is extended by presenting the MANNIDENT (Multivariable Artificial Neural Network Identification) algorithm by which the mathematical equations of linear dynamic process models determine the topology and initial weights of a network, which is further trained using backpropagation. This method is applied to the task of modeling a nonisothermal chemical reactor in which a first-order exothermic reaction is occurring. This method produces statistically significant gains in accuracy over both a standard neural network approach and a linear model. Furthermore, using the approximate linear model to initialize the weights of the network produces statistically less variation in model fidelity. By structuring the neural network according to the approximate linear model, the model can be readily interpreted.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (5): 746–757.
Published: 01 September 1992
Abstract
View article
PDF
The KBANN (Knowledge-Based Artificial Neural Networks) approach uses neural networks to refine knowledge that can be written in the form of simple propositional rules. We extend this idea further by presenting the MANNCON (Multivariable Artificial Neural Network Control) algorithm by which the mathematical equations governing a PID (Proportional-Integral-Derivative) controller determine the topology and initial weights of a network, which is further trained using backpropagation. We apply this method to the task of controlling the outflow and temperature of a water tank, producing statistically significant gains in accuracy over both a standard neural network approach and a nonlearning PID controller. Furthermore, using the PID knowledge to initialize the weights of the network produces statistically less variation in test set accuracy when compared to networks initialized with small random numbers.