Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Giacomo Indiveri
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (12): 2510–2547.
Published: 01 December 2015
FIGURES
| View All (18)
Abstract
View article
PDF
Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multistability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework that can be used to model other perceptual inference phenomena.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (9): 1973–2004.
Published: 01 September 2014
FIGURES
| View All (11)
Abstract
View article
PDF
Understanding the sequence generation and learning mechanisms used by recurrent neural networks in the nervous system is an important problem that has been studied extensively. However, most of the models proposed in the literature are either not compatible with neuroanatomy and neurophysiology experimental findings, or are not robust to noise and rely on fine tuning of the parameters. In this work, we propose a novel model of sequence learning and generation that is based on the interactions among multiple asymmetrically coupled winner-take-all (WTA) circuits. The network architecture is consistent with mammalian cortical connectivity data and uses realistic neuronal and synaptic dynamics that give rise to noise-robust patterns of sequential activity. The novel aspect of the network we propose lies in its ability to produce robust patterns of sequential activity that can be halted, resumed, and readily modulated by external input, and in its ability to make use of realistic plastic synapses to learn and reproduce the arbitrary input-imposed sequential patterns. Sequential activity takes the form of a single activity bump that stably propagates through multiple WTA circuits along one of a number of possible paths. Because the network can be configured to either generate spontaneous sequences or wait for external inputs to trigger a transition in the sequence, it provides the basis for creating state-dependent perception-action loops. We first analyze a rate-based approximation of the proposed spiking network to highlight the relevant features of the network dynamics and then show numerical simulation results with spiking neurons, realistic conductance-based synapses, and spike-timing dependent plasticity (STDP) rules to validate the rate-based model.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (7): 1669–1694.
Published: 01 July 2012
FIGURES
| View All (15)
Abstract
View article
PDF
Neuroscientists often propose detailed computational models to probe the properties of the neural systems they study. With the advent of neuromorphic engineering, there is an increasing number of hardware electronic analogs of biological neural systems being proposed as well. However, for both biological and hardware systems, it is often difficult to estimate the parameters of the model so that they are meaningful to the experimental system under study, especially when these models involve a large number of states and parameters that cannot be simultaneously measured. We have developed a procedure to solve this problem in the context of interacting neural populations using a recently developed dynamic state and parameter estimation (DSPE) technique. This technique uses synchronization as a tool for dynamically coupling experimentally measured data to its corresponding model to determine its parameters and internal state variables. Typically experimental data are obtained from the biological neural system and the model is simulated in software; here we show that this technique is also efficient in validating proposed network models for neuromorphic spike-based very large-scale integration (VLSI) chips and that it is able to systematically extract network parameters such as synaptic weights, time constants, and other variables that are not accessible by direct observation. Our results suggest that this method can become a very useful tool for model-based identification and configuration of neuromorphic multichip VLSI systems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (10): 2457–2497.
Published: 01 October 2011
FIGURES
| View All (17)
Abstract
View article
PDF
An increasing number of research groups are developing custom hybrid analog/digital very large scale integration (VLSI) chips and systems that implement hundreds to thousands of spiking neurons with biophysically realistic dynamics, with the intention of emulating brainlike real-world behavior in hardware and robotic systems rather than simply simulating their performance on general-purpose digital computers. Although the electronic engineering aspects of these emulation systems is proceeding well, progress toward the actual emulation of brainlike tasks is restricted by the lack of suitable high-level configuration methods of the kind that have already been developed over many decades for simulations on general-purpose computers. The key difficulty is that the dynamics of the CMOS electronic analogs are determined by transistor biases that do not map simply to the parameter types and values used in typical abstract mathematical models of neurons and their networks. Here we provide a general method for resolving this difficulty. We describe a parameter mapping technique that permits an automatic configuration of VLSI neural networks so that their electronic emulation conforms to a higher-level neuronal simulation. We show that the neurons configured by our method exhibit spike timing statistics and temporal dynamics that are the same as those observed in the software simulated neurons and, in particular, that the key parameters of recurrent VLSI neural networks (e.g., implementing soft winner-take-all) can be precisely tuned. The proposed method permits a seamless integration between software simulations with hardware emulations and intertranslatability between the parameters of abstract neuronal models and their emulation counterparts. Most important, our method offers a route toward a high-level task configuration language for neuromorphic VLSI systems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (10): 2581–2603.
Published: 01 October 2007
Abstract
View article
PDF
Synapses are crucial elements for computation and information transfer in both real and artificial neural systems. Recent experimental findings and theoretical models of pulse-based neural networks suggest that synaptic dynamics can play a crucial role for learning neural codes and encoding spatiotemporal spike patterns. Within the context of hardware implementations of pulse-based neural networks, several analog VLSI circuits modeling synaptic functionality have been proposed. We present an overview of previously proposed circuits and describe a novel analog VLSI synaptic circuit suitable for integration in large VLSI spike-based neural systems. The circuit proposed is based on a computational model that fits the real postsynaptic currents with exponentials. We present experimental data showing how the circuit exhibits realistic dynamics and show how it can be connected to additional modules for implementing a wide range of synaptic properties.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (12): 2857–2880.
Published: 01 December 2000
Abstract
View article
PDF
Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.