Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Gianluigi Mongillo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (7): 1706–1716.
Published: 01 July 2008
Abstract
View article
PDF
We present an online version of the expectation-maximization (EM) algorithm for hidden Markov models (HMMs). The sufficient statistics required for parameters estimation is computed recursively with time, that is, in an online way instead of using the batch forward-backward procedure. This computational scheme is generalized to the case where the model parameters can change with time by introducing a discount factor into the recurrence relations. The resulting algorithm is equivalent to the batch EM algorithm, for appropriate discount factor and scheduling of parameters update. On the other hand, the online algorithm is able to deal with dynamic environments, i.e., when the statistics of the observed data is changing with time. The implications of the online algorithm for probabilistic modeling in neuroscience are briefly discussed.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (12): 2597–2637.
Published: 01 December 2004
Abstract
View article
PDF
Mean-field (MF) theory is extended to realistic networks of spiking neurons storing in synaptic couplings of randomly chosen stimuli of a given low coding level. The underlying synaptic matrix is the result of a generic, slow, long-term synaptic plasticity of two-state synapses, upon repeated presentation of the fixed set of the stimuli to be stored. The neural populations subtending the MF description are classified by the number of stimuli to which their neurons are responsive ( multiplicity ). This involves 2 p + 1 populations for a network storing p memories. The computational complexity of the MF description is then significantly reduced by observing that at low coding levels ( f ), only a few populations remain relevant: the population of mean multiplicity – pf and those of multiplicity of order √pf around the mean. The theory is used to produce (predict) bifurcation diagrams (the onset of selective delay activity and the rates in its various stationary states) and to compute the storage capacity of the network (the maximal number of single items used in training for each of which the network can sustain a persistent, selective activity state). This is done in various regions of the space of constitutive parameters for the neurons and for the learning process. The capacity is computed in MF versus potentiation amplitude, ratio of potentiation to depression probability and coding level f . The MF results compare well with recordings of delay activity rate distributions in simulations of the underlying microscopic network of 10,000 neurons.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (3): 565–596.
Published: 01 March 2003
Abstract
View article
PDF
The collective behavior of a network, modeling a cortical module of spiking neurons connected by plastic synapses is studied. A detailed spike-driven synaptic dynamics is simulated in a large network of spiking neurons, implementing the full double dynamics of neurons and synapses. The repeated presentation of a set of external stimuli is shown to structure the network to the point of sustaining working memory (selective delay activity). When the synaptic dynamics is analyzed as a function of pre- and postsynaptic spike rates in functionally defined populations, it reveals a novel variation of the Hebbian plasticity paradigm: in any functional set of synapses between pairs of neurons (e.g., stimulated—stimulated, stimulated—delay, stimulated—spontaneous), there is a finite probability of potentiation as well as of depression. This leads to a saturation of potentiation or depression at the level of the ratio of the two probabilities. When one of the two probabilities is very high relative to the other, the familiar Hebbian mechanism is recovered. But where correlated working memory is formed, it prevents overlearning. Constraints relevant to the stability of the acquired synaptic structure and the regimes of global activity allowing for structuring are expressed in terms of the parameters describing the single-synapse dynamics. The synaptic dynamics is discussed in the light of experiments observing precise spike timing effects and related issues of biological plausibility.