Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Gilles Wainrib
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (11): 2815–2832.
Published: 01 November 2013
FIGURES
| View All (10)
Abstract
View article
PDF
Identifying, formalizing, and combining biological mechanisms that implement known brain functions, such as prediction, is a main aspect of research in theoretical neuroscience. In this letter, the mechanisms of spike-timing-dependent plasticity and homeostatic plasticity, combined in an original mathematical formalism, are shown to shape recurrent neural networks into predictors. Following a rigorous mathematical treatment, we prove that they implement the online gradient descent of a distance between the network activity and its stimuli. The convergence to an equilibrium, where the network can spontaneously reproduce or predict its stimuli, does not suffer from bifurcation issues usually encountered in learning in recurrent neural networks.