Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Gonzalo Mena
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (12): 2790–2797.
Published: 01 December 2014
FIGURES
| View All (22)
Abstract
View article
PDF
Parametric models of the conditional intensity of a point process (e.g., generalized linear models) are popular in statistical neuroscience, as they allow us to characterize the variability in neural responses in terms of stimuli and spiking history. Parameter estimation in these models relies heavily on accurate evaluations of the log likelihood and its derivatives. Classical approaches use a discretized time version of the spiking process, and recent work has exploited the existence of a refractory period (during which the conditional intensity is zero following a spike) to obtain more accurate estimates of the likelihood. In this brief letter, we demonstrate that this method can be improved significantly by applying classical quadrature methods directly to the resulting continuous-time integral.