Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Guanrong Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (11): 2962–2978.
Published: 01 November 2010
FIGURES
| View All (6)
Abstract
View article
PDF
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (4): 949–968.
Published: 01 April 2005
Abstract
View article
PDF
Research of delayed neural networks with varying self-inhibitions, interconnection weights, and inputs is an important issue. In the real world, self-inhibitions, interconnection weights, and inputs should vary as time varies. In this letter, we discuss a large class of delayed neural networks with periodic inhibitions, interconnection weights, and inputs. We prove that if the activation functions are of Lipschitz type and some set of inequalities, for example, the set of inequalities 3.1 in theorem 1, is satisfied, the delayed system has a unique periodic solution, and any solution will converge to this periodic solution. We also prove that if either set of inequalities 3.20 in theorem 2 or 3.23 in theorem 3 is satisfied, then the system is exponentially stable globally. This class of delayed dynamical systems provides a general framework for many delayed dynamical systems. As special cases, it includes delayed Hopfield neural networks and cellular neural networks as well as distributed delayed neural networks with periodic self-inhibitions, interconnection weights, and inputs. Moreover, the entire discussion applies to delayed systems with constant self-inhibitions, interconnection weights, and inputs.