Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Gunnar Rätsch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (1): 272–300.
Published: 01 January 2009
FIGURES
| View All (4)
Abstract
View articletitled, Prototype Classification: Insights from Machine Learning
View
PDF
for article titled, Prototype Classification: Insights from Machine Learning
We shed light on the discrimination between patterns belonging to two different classes by casting this decoding problem into a generalized prototype framework. The discrimination process is then separated into two stages: a projection stage that reduces the dimensionality of the data by projecting it on a line and a threshold stage where the distributions of the projected patterns of both classes are separated. For this, we extend the popular mean-of-class prototype classification using algorithms from machine learning that satisfy a set of invariance properties. We report a simple yet general approach to express different types of linear classification algorithms in an identical and easy-to-visualize formal framework using generalized prototypes where these prototypes are used to express the normal vector and offset of the hyperplane. We investigate non-margin classifiers such as the classical prototype classifier, the Fisher classifier, and the relevance vector machine. We then study hard and soft margin classifiers such as the support vector machine and a boosted version of the prototype classifier. Subsequently, we relate mean-of-class prototype classification to other classification algorithms by showing that the prototype classifier is a limit of any soft margin classifier and that boosting a prototype classifier yields the support vector machine. While giving novel insights into classification per se by presenting a common and unified formalism, our generalized prototype framework also provides an efficient visualization and a principled comparison of machine learning classification.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (10): 2397–2414.
Published: 01 October 2002
Abstract
View articletitled, A New Discriminative Kernel from Probabilistic Models
View
PDF
for article titled, A New Discriminative Kernel from Probabilistic Models
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.