Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Hao Yang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (11): 2855–2881.
Published: 01 November 2018
FIGURES
Abstract
View article
PDF
Analysis and forecasting of sequential data, key problems in various domains of engineering and science, have attracted the attention of many researchers from different communities. When predicting the future probability of events using time series, recurrent neural networks (RNNs) are an effective tool that have the learning ability of feedforward neural networks and expand their expression ability using dynamic equations. Moreover, RNNs are able to model several computational structures. Researchers have developed various RNNs with different architectures and topologies. To summarize the work of RNNs in forecasting and provide guidelines for modeling and novel applications in future studies, this review focuses on applications of RNNs for time series forecasting in environmental factor forecasting. We present the structure, processing flow, and advantages of RNNs and analyze the applications of various RNNs in time series forecasting. In addition, we discuss limitations and challenges of applications based on RNNs and future research directions. Finally, we summarize applications of RNNs in forecasting.