Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Hendrik Jan Hoogeboom
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (3): 805–825.
Published: 01 March 2012
FIGURES
Abstract
View article
PDF
In a biological nervous system, astrocytes play an important role in the functioning and interaction of neurons, and astrocytes have excitatory and inhibitory influence on synapses. In this work, with this biological inspiration, a class of computation devices that consist of neurons and astrocytes is introduced, called spiking neural P systems with astrocytes (SNPA systems). The computation power of SNPA systems is investigated. It is proved that SNPA systems with simple neurons (all neurons have the same rule, one per neuron, of a very simple form) are Turing universal in both generative and accepting modes. If a bound is given on the number of spikes present in any neuron along a computation, then the computation power of SNPA systems is diminished. In this case, a characterization of semilinear sets of numbers is obtained.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (10): 2615–2646.
Published: 01 October 2010
FIGURES
| View All (16)
Abstract
View article
PDF
A variant of spiking neural P systems with positive or negative weights on synapses is introduced, where the rules of a neuron fire when the potential of that neuron equals a given value. The involved values—weights, firing thresholds, potential consumed by each rule—can be real (computable) numbers, rational numbers, integers, and natural numbers. The power of the obtained systems is investigated. For instance, it is proved that integers (very restricted: 1, −1 for weights, 1 and 2 for firing thresholds, and as parameters in the rules) suffice for computing all Turing computable sets of numbers in both the generative and the accepting modes. When only natural numbers are used, a characterization of the family of semilinear sets of numbers is obtained. It is shown that spiking neural P systems with weights can efficiently solve computationally hard problems in a nondeterministic way. Some open problems and suggestions for further research are formulated.