Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Henrik Jacobsson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (9): 2211–2255.
Published: 01 September 2006
Abstract
View article
PDF
This letter presents an algorithm, CrySSMEx, for extracting minimal finite state machine descriptions of dynamic systems such as recurrent neural networks. Unlike previous algorithms, CrySSMEx is parameter free and deterministic, and it efficiently generates a series of increasingly refined models. A novel finite stochastic model of dynamic systems and a novel vector quantization function have been developed to take into account the state-space dynamics of the system. The experiments show that (1) extraction from systems that can be described as regular grammars is trivial, (2) extraction from high-dimensional systems is feasible, and (3) extraction of approximative models from chaotic systems is possible. The results are promising, and an analysis of shortcomings suggests some possible further improvements. Some largely overlooked connections, of the field of rule extraction from recurrent neural networks, to other fields are also identified.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (6): 1223–1263.
Published: 01 June 2005
Abstract
View article
PDF
Rule extraction (RE) from recurrent neural networks (RNNs) refers to finding models of the underlying RNN, typically in the form of finite state machines, that mimic the network to a satisfactory degree while having the advantage of being more transparent. RE from RNNs can be argued to allow a deeper and more profound form of analysis of RNNs than other, more or less ad hoc methods. RE may give us understanding of RNNs in the intermediate levels between quite abstract theoretical knowledge of RNNs as a class of computing devices and quantitative performance evaluations of RNN instantiations. The development of techniques for extraction of rules from RNNs has been an active field since the early 1990s. This article reviews the progress of this development and analyzes it in detail. In order to structure the survey and evaluate the techniques, a taxonomy specifically designed for this purpose has been developed. Moreover, important open research issues are identified that, if addressed properly, possibly can give the field a significant push forward.