Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Hien D. Nguyen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (4): 990–1020.
Published: 01 April 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Mixture of autoregressions (MoAR) models provide a model-based approach to the clustering of time series data. The maximum likelihood (ML) estimation of MoAR models requires evaluating products of large numbers of densities of normal random variables. In practical scenarios, these products converge to zero as the length of the time series increases, and thus the ML estimation of MoAR models becomes infeasible without the use of numerical tricks. We propose a maximum pseudolikelihood (MPL) estimation approach as an alternative to the use of numerical tricks. The MPL estimator is proved to be consistent and can be computed with an EM (expectation-maximization) algorithm. Simulations are used to assess the performance of the MPL estimator against that of the ML estimator in cases where the latter was able to be calculated. An application to the clustering of time series data arising from a resting state fMRI experiment is presented as a demonstration of the methodology.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (12): 2585–2593.
Published: 01 December 2016
Abstract
View article
PDF
The mixture-of-experts (MoE) model is a popular neural network architecture for nonlinear regression and classification. The class of MoE mean functions is known to be uniformly convergent to any unknown target function, assuming that the target function is from a Sobolev space that is sufficiently differentiable and that the domain of estimation is a compact unit hypercube. We provide an alternative result, which shows that the class of MoE mean functions is dense in the class of all continuous functions over arbitrary compact domains of estimation. Our result can be viewed as a universal approximation theorem for MoE models. The theorem we present allows MoE users to be confident in applying such models for estimation when data arise from nonlinear and nondifferentiable generative processes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (3): 485–492.
Published: 01 March 2016
FIGURES
Abstract
View article
PDF
Maximum pseudo-likelihood estimation (MPLE) is an attractive method for training fully visible Boltzmann machines (FVBMs) due to its computational scalability and the desirable statistical properties of the MPLE. No published algorithms for MPLE have been proven to be convergent or monotonic. In this note, we present an algorithm for the MPLE of FVBMs based on the block successive lower-bound maximization (BSLM) principle. We show that the BSLM algorithm monotonically increases the pseudo-likelihood values and that the sequence of BSLM estimates converges to the unique global maximizer of the pseudo-likelihood function. The relationship between the BSLM algorithm and the gradient ascent (GA) algorithm for MPLE of FVBMs is also discussed, and a convergence criterion for the GA algorithm is given.