Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Hilbert J. Kappen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (7): 1739–1765.
Published: 01 July 2007
Abstract
View article
PDF
Previous work has shown that networks of neurons with two coupled layers of excitatory and inhibitory neurons can reveal oscillatory activity. For example, Börgers and Kopell (2003) have shown that oscillations occur when the excitatory neurons receive a sufficiently large input. A constant drive to the excitatory neurons is sufficient for oscillatory activity. Other studies (Doiron, Chacron, Maler, Longtin, & Bastian, 2003; Doiron, Lindner, Longtin, Maler, & Bastian, 2004) have shown that networks of neurons with two coupled layers of excitatory and inhibitory neurons reveal oscillatory activity only if the excitatory neurons receive correlated input, regardless of the amount of excitatory input. In this study, we show that these apparently contradictory results can be explained by the behavior of a single model operating in different regimes of parameter space. Moreover, we show that adding dynamic synapses in the inhibitory feedback loop provides a robust network behavior over a broad range of stimulus intensities, contrary to that of previous models. A remarkable property of the introduction of dynamic synapses is that the activity of the network reveals synchronized oscillatory components in the case of correlated input, but also reflects the temporal behavior of the input signal to the excitatory neurons. This allows the network to encode both the temporal characteristics of the input and the presence of spatial correlations in the input simultaneously.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (12): 2903–2923.
Published: 01 December 2002
Abstract
View article
PDF
We have examined a role of dynamic synapses in the stochastic Hopfield-like network behavior. Our results demonstrate an appearance of a novel phase characterized by quick transitions from one memory state to another. The network is able to retrieve memorized patterns corresponding to classical ferromagnetic states but switches between memorized patterns with an intermittent type of behavior. This phenomenon might reflect the flexibility of real neural systems and their readiness to receive and respond to novel and changing external stimuli.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (6): 1411–1427.
Published: 01 June 2000
Abstract
View article
PDF
Theories of learning and generalization hold that the generalization bias, defined as the difference between the training error and the generalization error, increases on average with the number of adaptive parameters. This article, however, shows that this general tendency is violated for a gaussian mixture model. For temperatures just below the first symmetry breaking point, the effective number of adaptive parameters increases and the generalization bias decreases. We compute the dependence of the neural information criterion on temperature around the symmetry breaking. Our results are confirmed by numerical cross-validation experiments.