Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Hiroaki Sasaki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (2): 477–504.
Published: 01 February 2018
FIGURES
Abstract
View article
PDF
Sufficient dimension reduction (SDR) is aimed at obtaining the low-rank projection matrix in the input space such that information about output data is maximally preserved. Among various approaches to SDR, a promising method is based on the eigendecomposition of the outer product of the gradient of the conditional density of output given input. In this letter, we propose a novel estimator of the gradient of the logarithmic conditional density that directly fits a linear-in-parameter model to the true gradient under the squared loss. Thanks to this simple least-squares formulation, its solution can be computed efficiently in a closed form. Then we develop a new SDR method based on the proposed gradient estimator. We theoretically prove that the proposed gradient estimator, as well as the SDR solution obtained from it, achieves the optimal parametric convergence rate. Finally, we experimentally demonstrate that our SDR method compares favorably with existing approaches in both accuracy and computational efficiency on a variety of artificial and benchmark data sets.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (11): 2887–2924.
Published: 01 November 2017
FIGURES
| View All (19)
Abstract
View article
PDF
The statistical dependencies that independent component analysis (ICA) cannot remove often provide rich information beyond the linear independent components. It would thus be very useful to estimate the dependency structure from data. While such models have been proposed, they have usually concentrated on higher-order correlations such as energy (square) correlations. Yet linear correlations are a fundamental and informative form of dependency in many real data sets. Linear correlations are usually completely removed by ICA and related methods so they can only be analyzed by developing new methods that explicitly allow for linearly correlated components. In this article, we propose a probabilistic model of linear nongaussian components that are allowed to have both linear and energy correlations. The precision matrix of the linear components is assumed to be randomly generated by a higher-order process and explicitly parameterized by a parameter matrix. The estimation of the parameter matrix is shown to be particularly simple because using score-matching (Hyvärinen, 2005 ), the objective function is a quadratic form. Using simulations with artificial data, we demonstrate that the proposed method improves the identifiability of nongaussian components by simultaneously learning their correlation structure. Applications on simulated complex cells with natural image input, as well as spectrograms of natural audio data, show that the method finds new kinds of dependencies between the components.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (8): 2076–2122.
Published: 01 August 2017
FIGURES
| View All (5)
Abstract
View article
PDF
A typical goal of linear-supervised dimension reduction is to find a low-dimensional subspace of the input space such that the projected input variables preserve maximal information about the output variables. The dependence-maximization approach solves the supervised dimension-reduction problem through maximizing a statistical dependence between projected input variables and output variables. A well-known statistical dependence measure is mutual information (MI), which is based on the Kullback-Leibler (KL) divergence. However, it is known that the KL divergence is sensitive to outliers. Quadratic MI (QMI) is a variant of MI based on the distance, which is more robust against outliers than the KL divergence, and a computationally efficient method to estimate QMI from data, least squares QMI (LSQMI), has been proposed recently. For these reasons, developing a supervised dimension-reduction method based on LSQMI seems promising. However, not QMI itself but the derivative of QMI is needed for subspace search in linear-supervised dimension reduction, and the derivative of an accurate QMI estimator is not necessarily a good estimator of the derivative of QMI. In this letter, we propose to directly estimate the derivative of QMI without estimating QMI itself. We show that the direct estimation of the derivative of QMI is more accurate than the derivative of the estimated QMI. Finally, we develop a linear-supervised dimension-reduction algorithm that efficiently uses the proposed derivative estimator and demonstrate through experiments that the proposed method is more robust against outliers than existing methods.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (7): 1388–1410.
Published: 01 July 2016
FIGURES
| View All (9)
Abstract
View article
PDF
Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (6): 1101–1140.
Published: 01 June 2016
FIGURES
| View All (24)
Abstract
View article
PDF
Estimating the derivatives of probability density functions is an essential step in statistical data analysis. A naive approach to estimate the derivatives is to first perform density estimation and then compute its derivatives. However, this approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator. To cope with this problem, in this letter, we propose a novel method that directly estimates density derivatives without going through density estimation. The proposed method provides computationally efficient estimation for the derivatives of any order on multidimensional data with a hyperparameter tuning method and achieves the optimal parametric convergence rate. We further discuss an extension of the proposed method by applying regularized multitask learning and a general framework for density derivative estimation based on Bregman divergences. Applications of the proposed method to nonparametric Kullback-Leibler divergence approximation and bandwidth matrix selection in kernel density estimation are also explored.