Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Hoai An Le Thi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (4): 759–793.
Published: 01 April 2020
Abstract
View article
PDF
We investigate an approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for online learning techniques. The prediction problem of an online learner can be formulated as a DC program for which online DCA is applied. We propose the two so-called complete/approximate versions of online DCA scheme and prove their logarithmic/sublinear regrets. Six online DCA-based algorithms are developed for online binary linear classification. Numerical experiments on a variety of benchmark classification data sets show the efficiency of our proposed algorithms in comparison with the state-of-the-art online classification algorithms.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (11): 3040–3077.
Published: 01 November 2017
FIGURES
| View All (5)
Abstract
View article
PDF
This letter proposes a novel approach using the -norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of -norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (6): 1163–1216.
Published: 01 June 2016
FIGURES
Abstract
View article
PDF
In this letter, we consider the nonnegative matrix factorization (NMF) problem and several NMF variants. Two approaches based on DC (difference of convex functions) programming and DCA (DC algorithm) are developed. The first approach follows the alternating framework that requires solving, at each iteration, two nonnegativity-constrained least squares subproblems for which DCA-based schemes are investigated. The convergence property of the proposed algorithm is carefully studied. We show that with suitable DC decompositions, our algorithm generates most of the standard methods for the NMF problem. The second approach directly applies DCA on the whole NMF problem. Two algorithms—one computing all variables and one deploying a variable selection strategy—are proposed. The proposed methods are then adapted to solve various NMF variants, including the nonnegative factorization, the smooth regularization NMF, the sparse regularization NMF, the multilayer NMF, the convex/convex-hull NMF, and the symmetric NMF. We also show that our algorithms include several existing methods for these NMF variants as special versions. The efficiency of the proposed approaches is empirically demonstrated on both real-world and synthetic data sets. It turns out that our algorithms compete favorably with five state-of-the-art alternating nonnegative least squares algorithms.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (12): 2827–2854.
Published: 01 December 2014
FIGURES
Abstract
View article
PDF
Automatic discovery of community structures in complex networks is a fundamental task in many disciplines, including physics, biology, and the social sciences. The most used criterion for characterizing the existence of a community structure in a network is modularity, a quantitative measure proposed by Newman and Girvan ( 2004 ). The discovery community can be formulated as the so-called modularity maximization problem that consists of finding a partition of nodes of a network with the highest modularity. In this letter, we propose a fast and scalable algorithm called DCAM, based on DC (difference of convex function) programming and DCA (DC algorithms), an innovative approach in nonconvex programming framework for solving the modularity maximization problem. The special structure of the problem considered here has been well exploited to get an inexpensive DCA scheme that requires only a matrix-vector product at each iteration. Starting with a very large number of communities, DCAM furnishes, as output results, an optimal partition together with the optimal number of communities ; that is, the number of communities is discovered automatically during DCAM’s iterations. Numerical experiments are performed on a variety of real-world network data sets with up to 4,194,304 nodes and 30,359,198 edges. The comparative results with height reference algorithms show that the proposed approach outperforms them not only on quality and rapidity but also on scalability. Moreover, it realizes a very good trade-off between the quality of solutions and the run time.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (10): 2776–2807.
Published: 01 October 2013
Abstract
View article
PDF
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.