Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Hong Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (7): 1879–1901.
Published: 01 July 2017
Abstract
View article
PDF
Recently, a new framework, Fredholm learning, was proposed for semisupervised learning problems based on solving a regularized Fredholm integral equation. It allows a natural way to incorporate unlabeled data into learning algorithms to improve their prediction performance. Despite rapid progress on implementable algorithms with theoretical guarantees, the generalization ability of Fredholm kernel learning has not been studied. In this letter, we focus on investigating the generalization performance of a family of classification algorithms, referred to as Fredholm kernel regularized classifiers. We prove that the corresponding learning rate can achieve ( is the number of labeled samples) in a limiting case. In addition, a representer theorem is provided for the proposed regularized scheme, which underlies its applications.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (4): 1107–1121.
Published: 01 April 2013
Abstract
View article
PDF
In this letter, we consider a density-level detection (DLD) problem by a coefficient-based classification framework with -regularizer and data-dependent hypothesis spaces. Although the data-dependent characteristic of the algorithm provides flexibility and adaptivity for DLD, it leads to difficulty in generalization error analysis. To overcome this difficulty, an error decomposition is introduced from an established classification framework. On the basis of this decomposition, the estimate of the learning rate is obtained by using Rademacher average and stepping-stone techniques. In particular, the estimate is independent of the capacity assumption used in the previous literature.