Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Ian C. Bruce
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (12): 2648–2671.
Published: 01 December 2005
Abstract
View article
PDF
We propose a novel model-based hearing compensation strategy and gradient-free optimization procedure for a learning-based hearing aid design. Motivated by physiological data and normal and impaired auditory nerve models, a hearing compensation strategy is cast as a neural coding problem, and a Neurocompensator is designed to compensate for the hearing loss and enhance the speech. With the goal of learning the Neurocompensator parameters, we use a gradient-free optimization procedure, an improved version of the ALOPEX that we have developed (Haykin, Chen, & Becker, 2004), to learn the unknown parameters of the Neurocompensator. We present our methodology, learning procedure, and experimental results in detail; discussion is also given regarding the unsupervised learning and optimization methods.