Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Ioannis Smyrnakis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (9): 2265–2302.
Published: 01 September 2013
FIGURES
| View All (33)
Abstract
View article
PDF
In this work, the Shannon information transfer rate due to the transmission of a linear combination of the firing rates of a number of afferent neurons is examined. The transmission of this linear combination (transfer statistic) takes place through a stochastic firing process, while a rate code is assumed. Constraints are imposed on the transmission process by the requirement that the coefficient of variation for the transfer statistic is small and by the relative variance of the individual terms in the calculation of the statistic. In the regime of no noise or signal correlations among the input neurons, simulations suggest that information transfer for fixed overall input is favored when there are few high-firing neurons, as opposed to more lower-firing neurons. Signal correlations among low-firing neurons can result in aggregates of high firing rates, improving in this way information transfer and calculational robustness. Under reasonable rate code assumptions, information transfer rates obtained are of the order 3 to 10 bit/sec.