Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Irit Opher
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (8): 1677–1690.
Published: 15 November 1997
Abstract
View article
PDF
Arrays of interacting identical neurons can develop coherent firing patterns, such as moving stripes that have been suggested as possible explanations of hallucinatory phenomena. Other known formations include rotating spirals and expanding concentric rings. We obtain all of them using a novel two-variable description of integrate-and-fire neurons that allows for a continuum formulation of neural fields. One of these variables distinguishes between the two different states of refractoriness and depolarization and acquires topological meaning when it is turned into a field. Hence, it leads to a topologic characterization of the ensuing solitary waves, or excitons . They are limited to pointlike excitations on a line and linear excitations, including all the examples noted above, on a two dimensional surface. A moving patch of firing activity is not an allowed solitary wave on our neural surface. Only the presence of strong inhomogeneity that destroys the neural field continuity allows for the appearance of patchy incoherent firing patterns driven by excitatory interactions.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (2): 373–389.
Published: 15 February 1996
Abstract
View article
PDF
Oscillatory attractor neural networks can perform temporal segmentation, i.e., separate the joint inputs they receive, through the formation of staggered oscillations. This property, which may be basic to many perceptual functions, is investigated here in the context of a symmetric dynamic system. The fully segmented mode is one type of limit cycle that this system can develop. It can be sustained for only a limited number n of oscillators. This limitation to a small number of segments is a basic phenomenon in such systems. Within our model we can explain it in terms of the limited range of narrow subharmonic solutions of the single nonlinear oscillator. Moreover, this point of view allows us to understand the dominance of three leading amplitudes in solutions of partial segmentation, which are obtained for high n . The latter are also abundant when we replace the common input with a graded one, allowing for different inputs to different oscillators. Switching to an input with fluctuating components, we obtain segmentation dominance for small systems and quite irregular waveforms for large systems.