Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-5 of 5
Ivor W. Tsang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (6): 1616–1655.
Published: 13 May 2021
FIGURES
| View All (11)
Abstract
View article
PDF
Driver mental fatigue leads to thousands of traffic accidents. The increasing quality and availability of low-cost electroencephalogram (EEG) systems offer possibilities for practical fatigue monitoring. However, non-data-driven methods, designed for practical, complex situations, usually rely on handcrafted data statistics of EEG signals. To reduce human involvement, we introduce a data-driven methodology for online mental fatigue detection: self-weight ordinal regression (SWORE). Reaction time (RT), referring to the length of time people take to react to an emergency, is widely considered an objective behavioral measure for mental fatigue state. Since regression methods are sensitive to extreme RTs, we propose an indirect RT estimation based on preferences to explore the relationship between EEG and RT, which generalizes to any scenario when an objective fatigue indicator is available. In particular, SWORE evaluates the noisy EEG signals from multiple channels in terms of two states: shaking state and steady state. Modeling the shaking state can discriminate the reliable channels from the uninformative ones, while modeling the steady state can suppress the task-nonrelevant fluctuation within each channel. In addition, an online generalized Bayesian moment matching (online GBMM) algorithm is proposed to online-calibrate SWORE efficiently per participant. Experimental results with 40 participants show that SWORE can maximally achieve consistent with RT, demonstrating the feasibility and adaptability of our proposed framework in practical mental fatigue estimation.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (10): 1936–1979.
Published: 01 October 2020
FIGURES
| View All (16)
Abstract
View article
PDF
Multiview alignment, achieving one-to-one correspondence of multiview inputs, is critical in many real-world multiview applications, especially for cross-view data analysis problems. An increasing amount of work has studied this alignment problem with canonical correlation analysis (CCA). However, existing CCA models are prone to misalign the multiple views due to either the neglect of uncertainty or the inconsistent encoding of the multiple views. To tackle these two issues, this letter studies multiview alignment from a Bayesian perspective. Delving into the impairments of inconsistent encodings, we propose to recover correspondence of the multiview inputs by matching the marginalization of the joint distribution of multiview random variables under different forms of factorization. To realize our design, we present adversarial CCA (ACCA), which achieves consistent latent encodings by matching the marginalized latent encodings through the adversarial training paradigm. Our analysis, based on conditional mutual information, reveals that ACCA is flexible for handling implicit distributions. Extensive experiments on correlation analysis and cross-view generation under noisy input settings demonstrate the superiority of our model.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (8): 1499–1530.
Published: 01 August 2020
FIGURES
| View All (6)
Abstract
View article
PDF
A driver's cognitive state of mental fatigue significantly affects his or her driving performance and more important, public safety. Previous studies have leveraged reaction time (RT) as the metric for mental fatigue and aim at estimating the exact value of RT using electroencephalogram (EEG) signals within a regression model. However, due to the easily corrupted and also nonsmooth properties of RTs during data collection, methods focusing on predicting the exact value of a noisy measurement, RT generally suffer from poor generalization performance. Considering that human RT is the reflection of brain dynamics preference (BDP) rather than a single regression output of EEG signals, we propose a novel channel-reliability-aware ranking (CArank) model for the multichannel ranking problem. CArank learns from BDPs using EEG data robustly and aims at preserving the ordering corresponding to RTs. In particular, we introduce a transition matrix to characterize the reliability of each channel used in the EEG data, which helps in learning with BDPs only from informative EEG channels. To handle large-scale EEG signals, we propose a stochastic-generalized expectation maximum (SGEM) algorithm to update CArank in an online fashion. Comprehensive empirical analysis on EEG signals from 40 participants shows that our CArank achieves substantial improvements in reliability while simultaneously detecting noisy or less informative EEG channels.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (2): 485–514.
Published: 01 February 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Zero-shot learning (ZSL) aims to recognize unseen objects (test classes) given some other seen objects (training classes) by sharing information of attributes between different objects. Attributes are artificially annotated for objects and treated equally in recent ZSL tasks. However, some inferior attributes with poor predictability or poor discriminability may have negative impacts on the ZSL system performance. This letter first derives a generalization error bound for ZSL tasks. Our theoretical analysis verifies that selecting the subset of key attributes can improve the generalization performance of the original ZSL model, which uses all the attributes. Unfortunately, previous attribute selection methods have been conducted based on the seen data, and their selected attributes have poor generalization capability to the unseen data, which is unavailable in the training stage of ZSL tasks. Inspired by learning from pseudo-relevance feedback, this letter introduces out-of-the-box data—pseudo-data generated by an attribute-guided generative model—to mimic the unseen data. We then present an iterative attribute selection (IAS) strategy that iteratively selects key attributes based on the out-of-the-box data. Since the distribution of the generated out-of-the-box data is similar to that of the test data, the key attributes selected by IAS can be effectively generalized to test data. Extensive experiments demonstrate that IAS can significantly improve existing attribute-based ZSL methods and achieve state-of-the-art performance.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (7): 1919–1938.
Published: 01 July 2007
Abstract
View article
PDF
The support vector data description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this letter is to extend the main idea of SVDD to pattern denoising. Combining the geodesic projection to the spherical decision boundary resulting from the SVDD, together with solving the preimage problem, we propose a new method for pattern denoising. We first solve SVDD for the training data and then for each noisy test pattern, obtain its denoised feature by moving its feature vector along the geodesic on the manifold to the nearest decision boundary of the SVDD ball. Finally we find the location of the denoised pattern by obtaining the pre-image of the denoised feature. The applicability of the proposed method is illustrated by a number of toy and real-world data sets.