Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Jörg Lücke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (8): 2113–2174.
Published: 01 August 2018
FIGURES
| View All (11)
Abstract
View article
PDF
We explore classifier training for data sets with very few labels. We investigate this task using a neural network for nonnegative data. The network is derived from a hierarchical normalized Poisson mixture model with one observed and two hidden layers. With the single objective of likelihood optimization, both labeled and unlabeled data are naturally incorporated into learning. The neural activation and learning equations resulting from our derivation are concise and local. As a consequence, the network can be scaled using standard deep learning tools for parallelized GPU implementation. Using standard benchmarks for nonnegative data, such as text document representations, MNIST, and NIST SD19, we study the classification performance when very few labels are used for training. In different settings, the network's performance is compared to standard and recently suggested semisupervised classifiers. While other recent approaches are more competitive for many labels or fully labeled data sets, we find that the network studied here can be applied to numbers of few labels where no other system has been reported to operate so far.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (11): 2979–3013.
Published: 01 November 2017
FIGURES
| View All (29)
Abstract
View article
PDF
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (8): 2177–2202.
Published: 01 August 2017
FIGURES
| View All (8)
Abstract
View article
PDF
We propose a nonparametric procedure to achieve fast inference in generative graphical models when the number of latent states is very large. The approach is based on iterative latent variable preselection, where we alternate between learning a selection function to reveal the relevant latent variables and using this to obtain a compact approximation of the posterior distribution for EM. This can make inference possible where the number of possible latent states is, for example, exponential in the number of latent variables, whereas an exact approach would be computationally infeasible. We learn the selection function entirely from the observed data and current expectation-maximization state via gaussian process regression. This is in contrast to earlier approaches, where selection functions were manually designed for each problem setting. We show that our approach performs as well as these bespoke selection functions on a wide variety of inference problems. In particular, for the challenging case of a hierarchical model for object localization with occlusion, we achieve results that match a customized state-of-the-art selection method at a far lower computational cost.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (10): 2805–2845.
Published: 01 October 2009
FIGURES
| View All (9)
Abstract
View article
PDF
We study a dynamical model of processing and learning in the visual cortex, which reflects the anatomy of V1 cortical columns and properties of their neuronal receptive fields. Based on recent results on the fine-scale structure of columns in V1, we model the activity dynamics in subpopulations of excitatory neurons and their interaction with systems of inhibitory neurons. We find that a dynamical model based on these aspects of columnar anatomy can give rise to specific types of computations that result in self-organization of afferents to the column. For a given type of input, self-organization reliably extracts the basic input components represented by neuronal receptive fields. Self-organization is very noise tolerant and can robustly be applied to different types of input. To quantitatively analyze the system's component extraction capabilities, we use two standard benchmarks: the bars test and natural images. In the bars test, the system shows the highest noise robustness reported so far. If natural image patches are used as input, self-organization results in Gabor-like receptive fields. In quantitative comparison with in vivo measurements, we find that the obtained receptive fields capture statistical properties of V1 simple cells that algorithms such as independent component analysis or sparse coding do not reproduce.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (10): 2441–2463.
Published: 01 October 2008
Abstract
View article
PDF
We describe a neural network able to rapidly establish correspondence between neural feature layers. Each of the network's two layers consists of interconnected cortical columns, and each column consists of inhibitorily coupled subpopulations of excitatory neurons. The dynamics of the system builds on a dynamic model of a single column, which is consistent with recent experimental findings. The network realizes dynamic links between its layers with the help of specialized columns that evaluate similarities between the activity distributions of local feature cell populations, are subject to a topology constraint, and can gate the transfer of feature information between the neural layers. The system can robustly be applied to natural images, and correspondences are found in time intervals estimated to be smaller than 100 ms in physiological terms.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (3): 501–533.
Published: 01 March 2004
Abstract
View article
PDF
We study a model of the cortical macrocolumn consisting of a collection of inhibitorily coupled minicolumns. The proposed system overcomes several severe deficits of systems based on single neurons as cerebral functional units, notably limited robustness to damage and unrealistically large computation time. Motivated by neuroanatomical and neurophysiological findings, the utilized dynamics is based on a simple model of a spiking neuron with refractory period, fixed random excitatory interconnection within minicolumns, and instantaneous inhibition within one macrocolumn. A stability analysis of the system's dynamical equations shows that minicolumns can act as monolithic functional units for purposes of critical, fast decisions and learning. Oscillating inhibition (in the gamma frequency range) leads to a phase-coupled population rate code and high sensitivity to small imbalances in minicolumn inputs. Minicolumns are shown to be able to organize their collective inputs without supervision by Hebbian plasticity into selective receptive field shapes, thereby becoming classifiers for input patterns. Using the bars test, we critically compare our system's performance with that of others and demonstrate its ability for distributed neural coding.