Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
J. J. Hopfield
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (5): 1119–1164.
Published: 01 May 2008
Abstract
View article
PDF
The algorithms that simple feedback neural circuits representing a brain area can rapidly carry out are often adequate to solve easy problems but for more difficult problems can return incorrect answers. A new excitatory-inhibitory circuit model of associative memory displays the common human problem of failing to rapidly find a memory when only a small clue is present. The memory model and a related computational network for solving Sudoku puzzles produce answers that contain implicit check bits in the representation of information across neurons, allowing a rapid evaluation of whether the putative answer is correct or incorrect through a computation related to visual pop-out. This fact may account for our strong psychological feeling of right or wrong when we retrieve a nominal memory from a minimal clue. This information allows more difficult computations or memory retrievals to be done in a serial fashion by using the fast but limited capabilities of a computational module multiple times. The mathematics of the excitatory-inhibitory circuits for associative memory and for Sudoku, both of which are understood in terms of energy or Lyapunov functions, is described in detail.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (1): 108–119.
Published: 01 January 1992
Abstract
View article
PDF
The capability of a small neural network to perform speaker-independent recognition of spoken digits in connected speech has been investigated. The network uses time delays to organize rapidly changing outputs of symbol detectors over the time scale of a word. The network is data driven and unclocked. To achieve useful accuracy in a speaker-independent setting, many new ideas and procedures were developed. These include improving the feature detectors, self-recognition of word ends, reduction in network size, and dividing speakers into natural classes. Quantitative experiments based on Texas Instruments (TI) digit databases are described.