Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
J. M. Cortes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (2): 448–466.
Published: 01 February 2010
FIGURES
| View All (4)
Abstract
View article
PDF
When presented with an item or a face, one might have a sense of recognition without the ability to recall when or where the stimulus has been encountered before. This sense of recognition is called familiarity memory . Following previous computational studies of familiarity memory, we investigate the dynamical properties of familiarity discrimination and contrast two different familiarity discriminators: one based on the energy of the neural network and the other based on the time derivative of the energy. We show how the familiarity signal decays rapidly after stimulus presentation. For both discriminators, we calculate the capacity using mean field analysis. Compared to recall capacity (the classical associative memory in Hopfield nets), both the energy and the slope discriminators have bigger capacity, yet the energy-based discriminator has a higher capacity than one based on its time derivative. Finally, both discriminators are found to have a different noise dependence.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (10): 2739–2755.
Published: 01 October 2007
Abstract
View article
PDF
We study the effect of competition between short-term synaptic depression and facilitation on the dynamic properties of attractor neural networks, using Monte Carlo simulation and a mean-field analysis. Depending on the balance of depression, facilitation, and the underlying noise, the network displays different behaviors, including associative memory and switching of activity between different attractors. We conclude that synaptic facilitation enhances the attractor instability in a way that (1) intensifies the system adaptability to external stimuli, which is in agreement with experiments, and (2) favors the retrieval of information with less error during short time intervals.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (3): 614–633.
Published: 01 March 2006
Abstract
View article
PDF
We study both analytically and numerically the effect of presynaptic noise on the transmission of information in attractor neural networks. The noise occurs on a very short timescale compared to that for the neuron dynamics and it produces short-time synaptic depression. This is inspired in recent neurobiological findings that show that synaptic strength may either increase or decrease on a short timescale depending on presynaptic activity. We thus describe a mechanism by which fast presynaptic noise enhances the neural network sensitivity to an external stimulus. The reason is that, in general, presynaptic noise induces nonequilibrium behavior and, consequently, the space of fixed points is qualitatively modified in such a way that the system can easily escape from the attractor. As a result, the model shows, in addition to pattern recognition, class identification and categorization, which may be relevant to the understanding of some of the brain complex tasks.