Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
J. Manuel Torres Moreno
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (4): 1007–1030.
Published: 15 May 1998
Abstract
View article
PDF
This article presents a new incremental learning algorithm for classification tasks, called Net Lines, which is well adapted for both binary and real-valued input patterns. It generates small, compact feedforward neural networks with one hidden layer of binary units and binary output units. A convergence theorem ensures that solutions with a finite number of hidden units exist for both binary and real-valued input patterns. An implementation for problems with more than two classes, valid for any binary classifier, is proposed. The generalization error and the size of the resulting networks are compared to the best published results on well-known classification benchmarks. Early stopping is shown to decrease overfitting, without improving the generalization performance.