Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
J. V. Stone
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (1): 194–217.
Published: 01 January 2007
Abstract
View article
PDF
After a language has been learned and then forgotten, relearning some words appears to facilitate spontaneous recovery of other words. More generally, relearning partially forgotten associations induces recovery of other associations in humans, an effect we call free-lunch learning (FLL). Using neural network models, we prove that FLL is a necessary consequence of storing associations as distributed representations. Specifically, we prove that (1) FLL becomes increasingly likely as the number of synapses (connection weights) increases, suggesting that FLL contributes to memory in neurophysiological systems, and (2) the magnitude of FLL is greatest if inactive synapses are removed, suggesting a computational role for synaptic pruning in physiological systems. We also demonstrate that FLL is different from generalization effects conventionally associated with neural network models. As FLL is a generic property of distributed representations, it may constitute an important factor in human memory.