Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Jackson E. T. Smith
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (8): 1667–1689.
Published: 01 August 2014
FIGURES
| View All (7)
Abstract
View article
PDF
Correlations between responses in visual cortex and perceptual performance help draw a functional link between neural activity and visually guided behavior. These correlations are commonly derived with ROC-based neural-behavioral covariances (referred to as choice or detect probability) using boxcar analysis windows. Although boxcar windows capture the covariation between neural activity and behavior during steady-state stimulus presentations, they are not optimized to capture these correlations during short time-varying visual inputs. In this study, we implemented a matched-filter technique, combined with cross-validation, to improve the estimation of ROC-based neural-behavioral covariance under short and dynamic stimulus conditions. We show that this approach maximizes the area under the ROC curve and converges to the true neural-behavioral covariance using a Poisson spiking model. We also demonstrate that the matched filter, combined with cross-validation, reveals the dynamics of the neural-behavioral covariations of individual MT neurons during the detection of a brief motion stimulus.