Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
James A. Bednar
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (7): 1525–1557.
Published: 01 July 2003
Abstract
View article
PDF
New born humans preferentially orient to facelike patterns at birth, but months of experience with faces are required for full face processing abilities to develop. Several models have been proposed for how the interaction of genetic and evironmental influences can explain these data. These models generally assume that the brain areas responsible for newborn orienting responses are not capable of learning and are physically separate from those that later learn from real faces. However, it has been difficult to reconcile these models with recent discoveries of face learning in newborns and young infants. We propose a general mechanism by which genetically specified and environment-driven preferences can coexist in the same visual areas. In particular, newborn face orienting may be the result of prenatal exposure of a learning system to internally generated input patterns, such as those found in PGO waves during REM sleep. Simulating this process with the HLISSOM biological model of the visualsystem, we demonstrate that the combination of learning and internal patterns is an efficient way to specify and develop circuitry for face perception. This prenatal learning can account for the newborn preferences for schematic and photographic images of faces, providing a computational explanation for how genetic influences interact with experience to construct a complex adaptive system.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (7): 1721–1740.
Published: 01 July 2000
Abstract
View article
PDF
RF-LISSOM, a self-organizing model of laterally connected orientation maps in the primary visual cortex, was used to study the psychological phenomenon known as the tilt aftereffect. The same self-organizing processes that are responsible for the long-term development of the map are shown to result in tilt aftereffects over short timescales in the adult. The model permits simultaneous observation of large numbers of neurons and connections, making it possible to relate high-level phenomena to low-level events, which is difficult to do experimentally. The results give detailed computational support for the long-standing conjecture that the direct tilt aftereffect arises from adaptive lateral interactions between feature detectors. They also make a new prediction that the indirect effect results from the normalization of synaptic efficacies during this process. The model thus provides a unified computational explanation of self-organization and both the direct and indirect tilt aftereffect in the primary visual cortex.