Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
James Theiler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (11): 2261–2291.
Published: 01 November 2004
Abstract
View articletitled, Correlated Firing Improves Stimulus Discrimination in a Retinal Model
View
PDF
for article titled, Correlated Firing Improves Stimulus Discrimination in a Retinal Model
Synchronous firing limits the amount of information that can be extracted by averaging the firing rates of similarly tuned neurons. Here, we show that the loss of such rate-coded information due to synchronous oscillations between retinal ganglion cells can be overcome by exploiting the information encoded by the correlations themselves. Two very different models, one based on axon-mediated inhibitory feedback and the other on oscillatory common input, were used to generate artificial spike trains whose synchronous oscillations were similar to those measured experimentally. Pooled spike trains were summed into a threshold detector whose output was classified using Bayesian discrimination. For a threshold detector with short summation times, realistic oscillatory input yielded superior discrimination of stimulus intensity compared to rate-matched Poisson controls. Even for summation times too long to resolve synchronous inputs, gamma band oscillations still contributed to improved discrimination by reducing the total spike count variability, or Fano factor. In separate experiments in which neurons were synchronized in a stimulus-dependent manner without attendant oscillations, the Fano factor increased markedly with stimulus intensity, implying that stimulus-dependent oscillations can offset the increased variability due to synchrony alone.
Journal Articles
Accurate On-line Support Vector Regression
UnavailablePublisher: Journals Gateway
Neural Computation (2003) 15 (11): 2683–2703.
Published: 01 November 2003
Abstract
View articletitled, Accurate On-line Support Vector Regression
View
PDF
for article titled, Accurate On-line Support Vector Regression
Batch implementations of support vector regression (SVR) are inefficient when used in an on-line setting because they must be retrained from scratch every time the training set is modified. Following an incremental support vector classification algorithm introduced by Cauwenberghs and Poggio (2001), we have developed an accurate on-line support vector regression (AOSVR) that efficiently updates a trained SVR function whenever a sample is added to or removed from the training set. The updated SVR function is identical to that produced by a batch algorithm. Applications of AOSVR in both on-line and cross-validation scenarios are presented.Inbothscenarios, numerical experiments indicate that AOSVR is faster than batch SVR algorithms with both cold and warm start.