Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Jared Sylvester
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (12): 3429–3443.
Published: 01 December 2009
FIGURES
| View All (5)
Abstract
View article
PDF
In many species, adjacent topographic maps in sensory neocortex are found to be oriented as roughly mirror-image copies of one another. Here we use a computational model to show for the first time that, in principle, adjacent cortical topographic maps that are mirror-image symmetric along two dimensions can arise from activity-dependent changes if the distribution radius of afferents sufficiently exceeds that of horizontal intracortical interactions. We also find that infrequently, other types of intermap symmetry and previously unexpected map relationships (such as interlocking rotation, in which two adjacent maps become intertwined) can occur. These results support the hypothesis that activity-dependent synaptic changes play a more important role in forming the orientations of adjacent cortical maps than is currently recognized.