Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jean-Pascal Pfister
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (3): 639–671.
Published: 01 March 2007
Abstract
View article
PDF
We studied the hypothesis that synaptic dynamics is controlled by three basic principles: (1) synapses adapt their weights so that neurons can effectively transmit information, (2) homeostatic processes stabilize the mean firing rate of the postsynaptic neuron, and (3) weak synapses adapt more slowly than strong ones, while maintenance of strong synapses is costly. Our results show that a synaptic update rule derived from these principles shares features, with spike-timing-dependent plasticity, is sensitive to correlations in the input and is useful for synaptic memory. Moreover, input selectivity (sharply tuned receptive fields) of postsynaptic neurons develops only if stimuli with strong features are presented. Sharply tuned neurons can coexist with unselective ones, and the distribution of synaptic weights can be unimodal or bimodal. The formulation of synaptic dynamics through an optimality criterion provides a simple graphical argument for the stability of synapses, necessary for synaptic memory.
Journal Articles
Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning
Publisher: Journals Gateway
Neural Computation (2006) 18 (6): 1318–1348.
Published: 01 June 2006
Abstract
View article
PDF
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or several desired firing times. We find that the optimal strategy of up- and downregulating synaptic efficacies depends on the relative timing between presynaptic spike arrival and desired postsynaptic firing. If the presynaptic spike arrives before the desired postsynaptic spike timing, our optimal learning rule predicts that the synapse should become potentiated. The dependence of the potentiation on spike timing directly reflects the time course of an excitatory postsynaptic potential. However, our approach gives no unique reason for synaptic depression under reversed spike timing. In fact, the presence and amplitude of depression of synaptic efficacies for reversed spike timing depend on how constraints are implemented in the optimization problem. Two different constraints, control of postsynaptic rates and control of temporal locality, are studied. The relation of our results to spike-timing-dependent plasticity and reinforcement learning is discussed.