Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Jeffrey N. Kidder
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1993) 5 (6): 885–892.
Published: 01 November 1993
Abstract
View article
PDF
We describe a hardware solution to a high-speed optical character recognition (OCR) problem. Noisy 15 × 10 binary images of machine written digits were processed and applied as input to Intel's Electrically Trainable Analog Neural Network (ETANN). In software simulation, we trained an 80 × 54 × 10 feedforward network using a modified version of backprop. We then downloaded the synaptic weights of the trained network to ETANN and tweaked them to account for differences between the simulation and the chip itself. The best recognition error rate was 0.9% in hardware with a 3.7% rejection rate on a 1000-character test set.