Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Jia Huichen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (1): 208–235.
Published: 01 January 2014
FIGURES
| View All (15)
Abstract
View article
PDF
In the research of machine learning algorithms for classification tasks, the comparison of the performances of algorithms is extremely important, and a statistical test of significance for generalization error is often used to perform it in the machine learning literature. In view of the randomness of partitions in cross-validation, a new blocked 3×2 cross-validation is proposed to estimate generalization error in this letter. We then conduct an analysis of variance of the blocked 3×2 cross-validated estimator. A relatively conservative variance estimator that considers the correlation between any two two-fold cross-validations, and was previously neglected in 5×2 cross-validated t and F -tests is put forward. A corresponding test using this variance estimator is presented to compare the performances of algorithms. Simulated results show that the performance of our test is comparable with that of 5×2 cross-validated tests but with less computation complexity.