Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Jiajing Gao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (10): 1980–1997.
Published: 01 October 2020
FIGURES
Abstract
View article
PDF
In this letter, we study a class of the regularized regression algorithms when the sampling process is unbounded. By choosing different loss functions, the learning algorithms can include a wide range of commonly used algorithms for regression. Unlike the prior work on theoretical analysis of unbounded sampling, no constraint on the output variables is specified in our setting. By an elegant error analysis, we prove consistency and finite sample bounds on the excess risk of the proposed algorithms under regular conditions.