Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jochen J. Steil
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (4): 940–978.
Published: 01 April 2013
FIGURES
| View All (24)
Abstract
View article
PDF
In the course of trial-and-error learning, the results of actions, manifested as rewards or punishments, occur often seconds after the actions that caused them. How can a reward be associated with an earlier action when the neural activity that caused that action is no longer present in the network? This problem is referred to as the distal reward problem . A recent computational study proposes a solution using modulated plasticity with spiking neurons and argues that precise firing patterns in the millisecond range are essential for such a solution. In contrast, the study reported in this letter shows that it is the rarity of correlating neural activity, and not the spike timing, that allows the network to solve the distal reward problem. In this study, rare correlations are detected in a standard rate-based computational model by means of a threshold-augmented Hebbian rule. The novel modulated plasticity rule allows a randomly connected network to learn in classical and instrumental conditioning scenarios with delayed rewards. The rarity of correlations is shown to be a pivotal factor in the learning and in handling various delays of the reward. This study additionally suggests the hypothesis that short-term synaptic plasticity may implement eligibility traces and thereby serve as a selection mechanism in promoting candidate synapses for long-term storage.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (2): 357–387.
Published: 01 February 2001
Abstract
View article
PDF
We present a recurrent neural network for feature binding and sensory segmentation: the competitive-layer model (CLM). The CLM uses topo-graphically structured competitive and cooperative interactions in a layered network to partition a set of input features into salient groups. The dynamics is formulated within a standard additive recurrent network with linear threshold neurons. Contextual relations among features are coded by pairwise compatibilities, which define an energy function to be minimized by the neural dynamics. Due to the usage of dynamical winner-take-all circuits, the model gains more flexible response properties than spin models of segmentation by exploiting amplitude information in the grouping process. We prove analytic results on the convergence and stable attractors of the CLM, which generalize earlier results on winner-take-all networks, and incorporate deterministic annealing for robustness against local minima. The piecewise linear dynamics of the CLM allows a linear eigensubspace analysis, which we use to analyze the dynamics of binding in conjunction with annealing. For the example of contour detection, we show how the CLM can integrate figure-ground segmentation and grouping into a unified model.