Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Jochen Triesch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (5): 1261–1284.
Published: 01 May 2008
Abstract
View article
PDF
Current models for learning feature detectors work on two timescales: on a fast timescale, the internal neurons' activations adapt to the current stimulus; on a slow timescale, the weights adapt to the statistics of the set of stimuli. Here we explore the adaptation of a neuron's intrinsic excitability, termed intrinsic plasticity, which occurs on a separate timescale. Here, a neuron maintains homeostasis of an exponentially distributed firing rate in a dynamic environment. We exploit this in the context of a generative model to impose sparse coding. With natural image input, localized edge detectors emerge as models of V1 simple cells. An intermediate timescale for the intrinsic plasticity parameters allows modeling aftereffects. In the tilt aftereffect, after a viewer adapts to a grid of a certain orientation, grids of a nearby orientation will be perceived as tilted away from the adapted orientation. Our results show that adapting the neurons' gain-parameter but not the threshold-parameter accounts for this effect. It occurs because neurons coding for the adapting stimulus attenuate their gain, while others increase it. Despite its simplicity and low maintenance, the intrinsic plasticity model accounts for more experimental details than previous models without this mechanism.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (4): 885–909.
Published: 01 April 2007
Abstract
View article
PDF
We propose a model of intrinsic plasticity for a continuous activation model neuron based on information theory. We then show how intrinsic and synaptic plasticity mechanisms interact and allow the neuron to discover heavy-tailed directions in the input. We also demonstrate that intrinsic plasticity may be an alternative explanation for the sliding threshold postulated in the BCM theory of synaptic plasticity. We present a theoretical analysis of the interaction of intrinsic plasticity with different Hebbian learning rules for the case of clustered inputs. Finally, we perform experiments on the “bars” problem, a popular nonlinear independent component analysis problem.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (6): 1441–1471.
Published: 01 June 2006
Abstract
View article
PDF
We present a system for the automatic interpretation of cluttered scenes containing multiple partly occluded objects in front of unknown, complex backgrounds. The system is based on an extended elastic graph matching algorithm that allows the explicit modeling of partial occlusions. Our approach extends an earlier system in two ways. First, we use elastic graph matching in stereo image pairs to increase matching robustness and disambiguate occlusion relations. Second, we use richer feature descriptions in the object models by integrating shape and texture with color features. We demonstrate that the combination of both extensions substantially increases recognition performance. The system learns about new objects in a simple one-shot learning approach. Despite the lack of statistical information in the object models and the lack of an explicit background model, our system performs surprisingly well for this very difficult task. Our results underscore the advantages of view-based feature constellation representations for difficult object recognition problems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (9): 2049–2074.
Published: 01 September 2001
Abstract
View article
PDF
Sensory integration or sensor fusion—the integration of information from different modalities, cues, or sensors—is among the most fundamental problems of perception in biological and artificial systems. We propose a new architecture for adaptively integrating different cues in a self-organized manner. In Democratic Integration different cues agree on a result, and each cue adapts toward the result agreed on. In particular, discordant cues are quickly suppressed and recalibrated, while cues having been consistent with the result in the recent past are given a higher weight in the future. The architecture is tested in a face tracking scenario. Experiments show its robustness with respect to sudden changes in the environment as long as the changes disrupt only a minority of cues at the same time, although all cues may be disrupted at one time or another.